Effects of Zr/Ti ratio on phase formation and dielectric properties of 0.8Pb(ZrxTi1 - X)O3-0.2Pb(Co 1/3Nb2/3)O3 ceramics

The 0.8Pb(ZrxTi1 - x)O3-0.2Pb(Co1/3Nb2/3)O3, [0.8PZT-0.2PCN] ceramics are expected to display excellent dielectric properties in compositions close to the morphotropic phase boundary (MPB). The influence of Zr/Ti ratio on phase formation and dielectric properties of the 0.8Pb(ZrxTi1 - x)O3-0.2Pb(Co1...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Prasatkhetragarn, P. Ketsuwan, M. Unruan, A. Ngamjarurojana, Y. Laosiritaworn, S. Ananta, R. Yimnirun, D. P. Cann
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77749316230&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49178
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:The 0.8Pb(ZrxTi1 - x)O3-0.2Pb(Co1/3Nb2/3)O3, [0.8PZT-0.2PCN] ceramics are expected to display excellent dielectric properties in compositions close to the morphotropic phase boundary (MPB). The influence of Zr/Ti ratio on phase formation and dielectric properties of the 0.8Pb(ZrxTi1 - x)O3-0.2Pb(Co1/3Nb2/3) O3 ceramics have been investigated in order to identify the morphotropic phase boundary (MPB) composition in this system. With XRD analysis, the crystal structure of dense specimens appeared to change gradually from tetragonal to rhombohedral with increasing Zr content. The dielectric properties measurements showed a maximum dielectric constant at x = 0.50 ± 0.01, while the transition temperature decreased with increasing Zr content in the system. Moreover, all ceramics showed diffused phase transition behaviors with a minimum diffusivity at x = 0.50 ± 0.01. These results clearly showed the significance of Zr/Ti ratio in controlling the electrical properties of the PZT-PCN ceramic system. Copyright © Taylor & Francis Group, LLC.