Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence resul...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49234 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-49234 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-492342018-08-16T02:12:52Z Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings Chakkrid Klin-eam Suthep Suantai Mathematics We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. 2018-08-16T02:12:52Z 2018-08-16T02:12:52Z 2009-11-24 Journal 16871812 16871820 2-s2.0-70449701669 10.1155/2009/261932 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49234 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Chakkrid Klin-eam Suthep Suantai Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
description |
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. |
format |
Journal |
author |
Chakkrid Klin-eam Suthep Suantai |
author_facet |
Chakkrid Klin-eam Suthep Suantai |
author_sort |
Chakkrid Klin-eam |
title |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_short |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_full |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_fullStr |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_full_unstemmed |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_sort |
strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49234 |
_version_ |
1681423373316390912 |