Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence resul...

Full description

Saved in:
Bibliographic Details
Main Authors: Chakkrid Klin-eam, Suthep Suantai
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49234
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-49234
record_format dspace
spelling th-cmuir.6653943832-492342018-08-16T02:12:52Z Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings Chakkrid Klin-eam Suthep Suantai Mathematics We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. 2018-08-16T02:12:52Z 2018-08-16T02:12:52Z 2009-11-24 Journal 16871812 16871820 2-s2.0-70449701669 10.1155/2009/261932 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49234
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Chakkrid Klin-eam
Suthep Suantai
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
description We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai.
format Journal
author Chakkrid Klin-eam
Suthep Suantai
author_facet Chakkrid Klin-eam
Suthep Suantai
author_sort Chakkrid Klin-eam
title Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_short Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_full Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_fullStr Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_full_unstemmed Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_sort strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449701669&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/49234
_version_ 1681423373316390912