Roles for rat hepatocyte malignant transforming factor (HMTF) in late stage of hepatocarcinogenesis
In a previous study, to identify genes of importance for hepatocellular carcinogenesis, and especially for processes involved in malignant transformation, the authors investigated differences in gene expression between adenomas and carcinomas by DNA microarray. In the present study, the authors inve...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=82355169076&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49667 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | In a previous study, to identify genes of importance for hepatocellular carcinogenesis, and especially for processes involved in malignant transformation, the authors investigated differences in gene expression between adenomas and carcinomas by DNA microarray. In the present study, the authors investigated AW434047, one of the sequences that was upregulated in carcinomas. The investigation led to the identification of a novel gene, which the authors named hepatocyte malignant transforming factor (HMTF), of unknown function whose expression was increased in hepatocellular carcinomas. Northern blot and in situ hybridization also demonstrated high levels of HMTF in rat hepatocellular carcinoma (HCC) cell lines, lymphocytes in the spleen, colon mucosal epithelia, spermatocytes, and granule cells of the hippocampus. Reduction of HMTF by RNA interference (RNAi) in N1 cells, an HCC cell line, caused suppression of cell proliferation, invasion, and migration. Suppression of proliferation appeared to be due to cell cycle arrest without increased apoptosis. Decreased HMTF expression resulted in down-regulation of STAT3, PCNA, and cyclin D1 and upregulation of p27. These results suggest that HMTF is a new marker for rat HCC and is involved in HCC cell proliferation and may also be linked to cell proliferation in the spleen, colon, brain, and testis. © Society of Toxicologic Pathology 2011. |
---|