Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes
Liposomes were prepared from DPPC (dipalmitoyl phosphatidyl choline) mixed with Chol (cholesterol) and CTA [cholest-5-en-3-ol(3β)(trimethylammonio) acetate] or DDAB (dioctadecyl dimethyl ammonium bromide) at various molar ratios by chloroform film method with sonication. The most physical stable (no...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960973034&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49793 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-49793 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-497932018-09-04T04:29:00Z Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes Aranya Manosroi Narinthorn Khositsuntiwong Chonlada Komno Worapaka Manosroi Rolf G. Werner Jiradej Manosoi Chemical Engineering Engineering Materials Science Medicine Pharmacology, Toxicology and Pharmaceutics Liposomes were prepared from DPPC (dipalmitoyl phosphatidyl choline) mixed with Chol (cholesterol) and CTA [cholest-5-en-3-ol(3β)(trimethylammonio) acetate] or DDAB (dioctadecyl dimethyl ammonium bromide) at various molar ratios by chloroform film method with sonication. The most physical stable (no sedimentation with an average zeta potential value of 47.7±1.44 mV) liposomal formulation (DPPC/CTA/DDAB at 7:2:1 molar ratio) was selected to load with human insulin (0.45 mg/mL) by the freeze dried empty liposomes (FDELs) method with the entrapment efficiency of human insulin of 62.72% (determined by gel filtration). Liposomes were spherical shape with unilamellar structure and an average size of 2.26±0.87 μm determined by TEM. The percentages of insulin remaining in liposomes when stored at 4±2, 30±2 and 45±2 °C for 4 months were 26.21, 36.86 and 15.75% which were higher than human insulin solution of 6.13, 11.31 and 2.61 times, respectively. The percentages of entrapment of human insulin were 62.72 at initial and at 31.72, 64.10 and 8.10 when kept at 4±2, 30±2 and 45±2 °C, respectively, for 4 months. The synthesized cationic lipid, CTA, and the DPPC/Chol/CTA liposomes loaded with human insulin demonstrated no cytotoxicity on normal human skin fibroblast but some cytotoxic effects on mouth epidermal cancer cell line. This study has demonstrated the enhancement of chemical stability of human insulin with no cytotoxicity when loaded this protein in cationic DPPC/CTA/DDAB liposomes. The results indicated the potential application of this cationic liposomal formulation for topical therapeutic use. Copyright © 2011 American Scientific Publishers All rights reserved. 2018-09-04T04:18:08Z 2018-09-04T04:18:08Z 2011-04-01 Journal 15507041 15507033 2-s2.0-79960973034 10.1166/jbn.2011.1282 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960973034&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49793 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemical Engineering Engineering Materials Science Medicine Pharmacology, Toxicology and Pharmaceutics |
spellingShingle |
Chemical Engineering Engineering Materials Science Medicine Pharmacology, Toxicology and Pharmaceutics Aranya Manosroi Narinthorn Khositsuntiwong Chonlada Komno Worapaka Manosroi Rolf G. Werner Jiradej Manosoi Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes |
description |
Liposomes were prepared from DPPC (dipalmitoyl phosphatidyl choline) mixed with Chol (cholesterol) and CTA [cholest-5-en-3-ol(3β)(trimethylammonio) acetate] or DDAB (dioctadecyl dimethyl ammonium bromide) at various molar ratios by chloroform film method with sonication. The most physical stable (no sedimentation with an average zeta potential value of 47.7±1.44 mV) liposomal formulation (DPPC/CTA/DDAB at 7:2:1 molar ratio) was selected to load with human insulin (0.45 mg/mL) by the freeze dried empty liposomes (FDELs) method with the entrapment efficiency of human insulin of 62.72% (determined by gel filtration). Liposomes were spherical shape with unilamellar structure and an average size of 2.26±0.87 μm determined by TEM. The percentages of insulin remaining in liposomes when stored at 4±2, 30±2 and 45±2 °C for 4 months were 26.21, 36.86 and 15.75% which were higher than human insulin solution of 6.13, 11.31 and 2.61 times, respectively. The percentages of entrapment of human insulin were 62.72 at initial and at 31.72, 64.10 and 8.10 when kept at 4±2, 30±2 and 45±2 °C, respectively, for 4 months. The synthesized cationic lipid, CTA, and the DPPC/Chol/CTA liposomes loaded with human insulin demonstrated no cytotoxicity on normal human skin fibroblast but some cytotoxic effects on mouth epidermal cancer cell line. This study has demonstrated the enhancement of chemical stability of human insulin with no cytotoxicity when loaded this protein in cationic DPPC/CTA/DDAB liposomes. The results indicated the potential application of this cationic liposomal formulation for topical therapeutic use. Copyright © 2011 American Scientific Publishers All rights reserved. |
format |
Journal |
author |
Aranya Manosroi Narinthorn Khositsuntiwong Chonlada Komno Worapaka Manosroi Rolf G. Werner Jiradej Manosoi |
author_facet |
Aranya Manosroi Narinthorn Khositsuntiwong Chonlada Komno Worapaka Manosroi Rolf G. Werner Jiradej Manosoi |
author_sort |
Aranya Manosroi |
title |
Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes |
title_short |
Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes |
title_full |
Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes |
title_fullStr |
Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes |
title_full_unstemmed |
Chemical stability and cytotoxicity of human insulin loaded in cationic DPPC/CTA/DDAB liposomes |
title_sort |
chemical stability and cytotoxicity of human insulin loaded in cationic dppc/cta/ddab liposomes |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79960973034&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49793 |
_version_ |
1681423474005901312 |