Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammet...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958086586&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49823 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-49823 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-498232018-09-04T04:18:43Z Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples Watsaka Siriangkhawut Kate Grudpan Jaroon Jakmunee Chemistry A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L-1Zn(II), 5-200 μg L-1Cd(II), 10-200 μg L-1Pb(II), 20-400 μg L-1Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L-1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L-1Zn(II), 13 μg L-1Cd(II), 13 μg L-1Pb(II) and 27 μg L-1Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area. © 2011 Elsevier B.V. All rights reserved. 2018-09-04T04:18:43Z 2018-09-04T04:18:43Z 2011-06-15 Journal 00399140 2-s2.0-79958086586 10.1016/j.talanta.2011.03.082 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958086586&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49823 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemistry |
spellingShingle |
Chemistry Watsaka Siriangkhawut Kate Grudpan Jaroon Jakmunee Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples |
description |
A cost-effective sequential injection system incorporating with an in-line UV digestion for breakdown of organic matter prior to voltammetric determination of Zn(II), Cd(II), Pb(II) and Cu(II) by anodic stripping voltammetry (ASV) on a hanging mercury drop electrode (HMDE) of a small scale voltammetric cell was developed. A low-cost small scale voltammetric cell was fabricated from disposable pipet tip and microcentrifuge tube with volume of about 3 mL for conveniently incorporated with the SI system. A home-made UV digestion unit was fabricated employing a small size and low wattage UV lamps and flow reactor made from PTFE tubing coiled around the UV lamp. An in-line single standard calibration or a standard addition procedure was developed employing a monosegmented flow technique. Performance of the proposed system was tested for in-line digestion of model water samples containing metal ions and some organic ligands such as strong organic ligand (EDTA) or intermediate organic ligand (humic acid). The wet acid digestion method (USEPA 3010a) was used as a standard digestion method for comparison. Under the optimum conditions, with deposition time of 180 s, linear calibration graphs in range of 10-300 μg L-1Zn(II), 5-200 μg L-1Cd(II), 10-200 μg L-1Pb(II), 20-400 μg L-1Cu(II) were obtained with detection limit of 3.6, 0.1, 0.7 and 4.3 μg L-1, respectively. Relative standard deviation were 4.2, 2.6, 3.1 and 4.7% for seven replicate analyses of 27 μg L-1Zn(II), 13 μg L-1Cd(II), 13 μg L-1Pb(II) and 27 μg L-1Cu(II), respectively. The system was validated by certified reference material of trace metals in natural water (SRM 1640 NIST). The developed system was successfully applied for speciation of Cd(II) Pb(II) and Cu(II) in ground water samples collected from nearby zinc mining area. © 2011 Elsevier B.V. All rights reserved. |
format |
Journal |
author |
Watsaka Siriangkhawut Kate Grudpan Jaroon Jakmunee |
author_facet |
Watsaka Siriangkhawut Kate Grudpan Jaroon Jakmunee |
author_sort |
Watsaka Siriangkhawut |
title |
Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples |
title_short |
Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples |
title_full |
Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples |
title_fullStr |
Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples |
title_full_unstemmed |
Sequential injection anodic stripping voltammetry with monosegmented flow and in-line UV digestion for determination of Zn(II), Cd(II), Pb(II) and Cu(II) in water samples |
title_sort |
sequential injection anodic stripping voltammetry with monosegmented flow and in-line uv digestion for determination of zn(ii), cd(ii), pb(ii) and cu(ii) in water samples |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79958086586&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/49823 |
_version_ |
1681423479392436224 |