Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A

The therapeutic index of cyclosporin A (CsA), an immunosuppressive drug, is limited by its nephrotoxic effect. Oxidative stress is suggested to play a crucial role as pathogenic factors. The present study aimed at investigating the effects of caffeic acid phenethyl ester (CAPE), a phenolic antioxida...

Full description

Saved in:
Bibliographic Details
Main Authors: Orawan Wongmekiat, Sumittra Gomonchareonsiri, Kamthorn Thamprasert
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052899352&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50167
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-50167
record_format dspace
spelling th-cmuir.6653943832-501672018-09-04T04:28:45Z Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A Orawan Wongmekiat Sumittra Gomonchareonsiri Kamthorn Thamprasert Medicine Pharmacology, Toxicology and Pharmaceutics The therapeutic index of cyclosporin A (CsA), an immunosuppressive drug, is limited by its nephrotoxic effect. Oxidative stress is suggested to play a crucial role as pathogenic factors. The present study aimed at investigating the effects of caffeic acid phenethyl ester (CAPE), a phenolic antioxidant, on renal function, morphology, and oxidative stress following CsA treatment. Rats were treated with vehicle, CsA (50mg/kg), and CsA plus CAPE (10 and 30μmol/kg) for 10days. Renal function, histopathology, and tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were evaluated 24h after the last treatment. CsA produced nephrotoxicity as indicated by a significant increase in serum creatinine and blood urea nitrogen, but decrease creatinine and urea clearance compared to those treated with vehicle. Severe vacuolations and tubular necrosis were evident in the kidney of CsA-treated rats. CsA also increased renal MDA and decreased GSH content significantly. Administration of CAPE along with CsA restored all the changes caused by CsA. These results clearly demonstrate the pivotal role of oxidative stress and its relation to renal dysfunction and also point to the protective potential of CAPE against CsA nephrotoxicity. The protection afforded by CAPE is mediated, at least in part, through inhibiting renal lipid peroxidation and enhancing or maintaining the antioxidant glutathione content. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique. 2018-09-04T04:25:41Z 2018-09-04T04:25:41Z 2011-10-01 Journal 14728206 07673981 2-s2.0-80052899352 10.1111/j.1472-8206.2010.00884.x https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052899352&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50167
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Medicine
Pharmacology, Toxicology and Pharmaceutics
spellingShingle Medicine
Pharmacology, Toxicology and Pharmaceutics
Orawan Wongmekiat
Sumittra Gomonchareonsiri
Kamthorn Thamprasert
Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A
description The therapeutic index of cyclosporin A (CsA), an immunosuppressive drug, is limited by its nephrotoxic effect. Oxidative stress is suggested to play a crucial role as pathogenic factors. The present study aimed at investigating the effects of caffeic acid phenethyl ester (CAPE), a phenolic antioxidant, on renal function, morphology, and oxidative stress following CsA treatment. Rats were treated with vehicle, CsA (50mg/kg), and CsA plus CAPE (10 and 30μmol/kg) for 10days. Renal function, histopathology, and tissue malondialdehyde (MDA) and reduced glutathione (GSH) levels were evaluated 24h after the last treatment. CsA produced nephrotoxicity as indicated by a significant increase in serum creatinine and blood urea nitrogen, but decrease creatinine and urea clearance compared to those treated with vehicle. Severe vacuolations and tubular necrosis were evident in the kidney of CsA-treated rats. CsA also increased renal MDA and decreased GSH content significantly. Administration of CAPE along with CsA restored all the changes caused by CsA. These results clearly demonstrate the pivotal role of oxidative stress and its relation to renal dysfunction and also point to the protective potential of CAPE against CsA nephrotoxicity. The protection afforded by CAPE is mediated, at least in part, through inhibiting renal lipid peroxidation and enhancing or maintaining the antioxidant glutathione content. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.
format Journal
author Orawan Wongmekiat
Sumittra Gomonchareonsiri
Kamthorn Thamprasert
author_facet Orawan Wongmekiat
Sumittra Gomonchareonsiri
Kamthorn Thamprasert
author_sort Orawan Wongmekiat
title Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A
title_short Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A
title_full Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A
title_fullStr Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A
title_full_unstemmed Caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin A
title_sort caffeic acid phenethyl ester protects against oxidative stress-related renal dysfunction in rats treated with cyclosporin a
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80052899352&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50167
_version_ 1681423541150416896