Controlled Gd2O3 nanorods and nanotubes by the annealing of Gd(OH)3 nanorod and nanotube precursors and self-templates produced by a microwave-assisted hydrothermal process
One dimensional Gd(OH)3 nanorods and nanotubes were successfully produced through a microwave-assisted hydrothermal process of Gd(NO 3)3 solutions at pH 10, adjusted using 3 M NaOH and NH4OH as buffer solutions. Subsequently, the Gd(OH)3 nanorods and nanotubes, functioned as both the precursors and...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957712119&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50656 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | One dimensional Gd(OH)3 nanorods and nanotubes were successfully produced through a microwave-assisted hydrothermal process of Gd(NO 3)3 solutions at pH 10, adjusted using 3 M NaOH and NH4OH as buffer solutions. Subsequently, the Gd(OH)3 nanorods and nanotubes, functioned as both the precursors and self-templates, were annealed at 450 °C for 2 h to form the respective Gd2O 3 nanorods and nanotubes whilst retaining their shapes. X-Ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize these Gd(OH)3 and Gd2O3 nanorods and nanotubes, of which the formation mechanisms were also proposed. © 2010 The Royal Society of Chemistry. |
---|