A role of BNLT compound addition on structure and properties of PZT ceramics
In this research, effects of lead-free bismuth sodium lanthanum titanate (BNLT) addition on structure and properties of lead zirconate titanate (PZT) ceramics were investigated. PZT ceramics with addition of 0.1-3.0 wt%BNLT were fabricated by a solid-state mixed oxide method and sintering at 1050-12...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77956056272&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50662 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | In this research, effects of lead-free bismuth sodium lanthanum titanate (BNLT) addition on structure and properties of lead zirconate titanate (PZT) ceramics were investigated. PZT ceramics with addition of 0.1-3.0 wt%BNLT were fabricated by a solid-state mixed oxide method and sintering at 1050-1200 °C for 2 h to obtain dense ceramics with at least 96% of theoretical density. X-ray diffraction indicated that complete solid solution occurred for all compositions. Phase identification showed both tetragonal and rhombohedral perovskite structure of PZT with no BNLT phase detected. Scanning electron micrographs of fractured PZT/BNLT ceramics showed equiaxed grain shape with both transgranular and intergranular fracture modes. Addition of BNLT was also found to reduce densification and effectively limited grain growth of PZT ceramic. Optimum Hv and KICvalues were found to be 4.85 GPa and 1.56 MPa.m1/2for PZT/0.5 wt%BNLT sample. Among PZT/BNLT samples, room temperature dielectric constant seemed to be improved with increasing BNLT content. The maximum piezoelectric coefficient values were observed in pure PZT ceramic and were slightly decreased in BNLT-added samples. Small reduction of remanent polarization and coercive field in hysteresis loops was observed in BNLT-added samples, indicating a slightly suppressed ferroelectric interaction in this material system. © 2010 Elsevier Masson SAS. All rights reserved. |
---|