3D missing point estimation using fuzzy support vector regression

Laser line scanner are becoming very popular very recently because there is no touching the surface to determine coordinates. However, there are some missing points because of some parts of objects are out of sight from the laser. Therefore, in this research we introduce an automatic method to estim...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Sirinnared Winaipanich, Sansanee Auephanwiriyakul, Nipon Theera-Umpon
التنسيق: وقائع المؤتمر
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77954922581&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50714
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Laser line scanner are becoming very popular very recently because there is no touching the surface to determine coordinates. However, there are some missing points because of some parts of objects are out of sight from the laser. Therefore, in this research we introduce an automatic method to estimate missing points in a Cartesian coordinate system using fuzzy support vector regression (FSVR). We also compare our result with the one from support vector regression (SVR). The results show that the FSVR is a suitable method in missing 3D coordinates estimation.