Artificial neural network modeling of ferroelectric hysteresis: an application to soft lead zirconate titanate ceramics

In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using data measured from soft lead zirconate titanate [Pb (Zr1-xTix)O3 or PZT] ceramics as an application. Data from experiments were split into training, testing and validation dataset. Four ANN models were...

Full description

Saved in:
Bibliographic Details
Main Authors: Wimalin Laosiritaworn, Rattikorn Yimnirun, Yongyut Laosiritaworn
Format: Book Series
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=75749083667&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50843
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using data measured from soft lead zirconate titanate [Pb (Zr1-xTix)O3 or PZT] ceramics as an application. Data from experiments were split into training, testing and validation dataset. Four ANN models were developed separately to predict output of the hysteresis area, remnant, coercivity and squareness. Each model has two neurons in the input layer, which represent field amplitude and field frequency. The ANNs were trained with varying number of hidden layer and number of neurons in each layer to find the best network architecture with highest accuracy. After the networks have been trained, they were used to predict hysteresis properties of the unseen testing patterns of input. The predicted and the testing data were found to match very well which suggests the ANN success in modeling ferroelectric hysteresis properties obtained from experiments. © (2010) Trans Tech Publications.