Crystal structure of a major fragment of the salt-tolerant glutaminase from Micrococcus luteus K-3
Glutaminase of Micrococcus luteus K-3 (intact glutaminase; 48 kDa) is digested to a C-terminally truncated fragment (glutaminase fragment; 42 kDa) that shows higher salt tolerance than that of the intact glutaminase. The crystal structure of the glutaminase fragment was determined at 2.4 Å resolutio...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-33745407589&partnerID=40&md5=8150627818cdf7b1367792e2df09d85d http://cmuir.cmu.ac.th/handle/6653943832/5095 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
Summary: | Glutaminase of Micrococcus luteus K-3 (intact glutaminase; 48 kDa) is digested to a C-terminally truncated fragment (glutaminase fragment; 42 kDa) that shows higher salt tolerance than that of the intact glutaminase. The crystal structure of the glutaminase fragment was determined at 2.4 Å resolution using multiple-wavelength anomalous dispersion (MAD). The glutaminase fragment is composed of N-terminal and C-terminal domains, and a putative catalytic serine-lysine dyad (S64 and K67) is located in a cleft of the N-terminal domain. Mutations of the S64 or K67 residues abolished the enzyme activity. The N-terminal domain has abundant glutamic acid residues on its surface, which may explain its salt-tolerant mechanism. A diffraction analysis of the intact glutaminase crystals (a twinning fraction of 0.43) located the glutaminase fragment in the unit cell but failed to turn up clear densities for the missing C-terminal portion of the molecule. © 2006 Elsevier Inc. All rights reserved. |
---|