Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective
This paper describes and evaluates a self-stabilizable adaptation framework for data center applications. The design of the proposed architecture, SymbioticSphere, is inspired by key biological principles such as decentralization, natural selection, emergence and symbiosis. In SymbioticSphere, each...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877837748&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51504 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-51504 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-515042018-09-04T06:03:29Z Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective Junichi Suzuki Paskorn Champrasert Chonho Lee Computer Science This paper describes and evaluates a self-stabilizable adaptation framework for data center applications. The design of the proposed architecture, SymbioticSphere, is inspired by key biological principles such as decentralization, natural selection, emergence and symbiosis. In SymbioticSphere, each data center application consists of application services and middleware platforms. Each service and platform is designed as a biological entity, analogous to an individual bee in a bee colony, and implements biological behaviors such as energy exchange, migration, replication and death. SymbioticSphere allows services and platforms to (1) adaptively invoke their behaviors according to dynamic network conditions and (2) autonomously seek stable behavior invocations as equilibria (or symbiosis) between them. A symbiosis between a service and a platform is sought as a Nash equilibrium in an extensive-form game. Simulation results demonstrate that SymbioticSphere allows services and platforms to successfully adapt to dynamic networks in a self-stabilizable manner. © 2012 IEEE. 2018-09-04T06:03:29Z 2018-09-04T06:03:29Z 2012-12-01 Conference Proceeding 2-s2.0-84877837748 10.1109/SCIS-ISIS.2012.6505035 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877837748&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51504 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Computer Science |
spellingShingle |
Computer Science Junichi Suzuki Paskorn Champrasert Chonho Lee Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective |
description |
This paper describes and evaluates a self-stabilizable adaptation framework for data center applications. The design of the proposed architecture, SymbioticSphere, is inspired by key biological principles such as decentralization, natural selection, emergence and symbiosis. In SymbioticSphere, each data center application consists of application services and middleware platforms. Each service and platform is designed as a biological entity, analogous to an individual bee in a bee colony, and implements biological behaviors such as energy exchange, migration, replication and death. SymbioticSphere allows services and platforms to (1) adaptively invoke their behaviors according to dynamic network conditions and (2) autonomously seek stable behavior invocations as equilibria (or symbiosis) between them. A symbiosis between a service and a platform is sought as a Nash equilibrium in an extensive-form game. Simulation results demonstrate that SymbioticSphere allows services and platforms to successfully adapt to dynamic networks in a self-stabilizable manner. © 2012 IEEE. |
format |
Conference Proceeding |
author |
Junichi Suzuki Paskorn Champrasert Chonho Lee |
author_facet |
Junichi Suzuki Paskorn Champrasert Chonho Lee |
author_sort |
Junichi Suzuki |
title |
Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective |
title_short |
Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective |
title_full |
Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective |
title_fullStr |
Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective |
title_full_unstemmed |
Self-stabilizable symbiosis for cloud data center applications: A game theoretic perspective |
title_sort |
self-stabilizable symbiosis for cloud data center applications: a game theoretic perspective |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84877837748&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51504 |
_version_ |
1681423781730451456 |