Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles

Chitosan (CTS) and chitosan-thioglycolic acid (CTS-TGA) nanoparticles loaded with four aqueous extracts of Thai anti-cancer medicinal plants were prepared by ionic interaction with tripolyphosphate (TPP). The averages sizes, zeta-potentials and PDI of the CTS and CTS-TGA nanoparticles loaded with th...

Full description

Saved in:
Bibliographic Details
Main Authors: Korawinwich Boonpisuttinant, Aranya Manosroi, Deni Rahmat, Jiradej Manosroi
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84870900773&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51519
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-51519
record_format dspace
spelling th-cmuir.6653943832-515192018-09-04T06:15:04Z Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles Korawinwich Boonpisuttinant Aranya Manosroi Deni Rahmat Jiradej Manosroi Computer Science Energy Engineering Environmental Science Mathematics Social Sciences Chitosan (CTS) and chitosan-thioglycolic acid (CTS-TGA) nanoparticles loaded with four aqueous extracts of Thai anti-cancer medicinal plants were prepared by ionic interaction with tripolyphosphate (TPP). The averages sizes, zeta-potentials and PDI of the CTS and CTS-TGA nanoparticles loaded with the aqueous extracts were in range of 309.09±66.3 to 394.6±71.3 nm, +1.73±2.39 to +2.39±0.79 mV and 0.354±0.021 to 0.555± 0.012; and 225.0±38.7 to 311.5±51.4 nm, 1.46±0.63 to 3.59±0.45 and 0.229±0.069 to 0.398±0.087, respectively, whereas 244.8±48.1 nm, +3.56±0.71 mV and 0.350; and 174.2±23.2 nm, +3.22±0.85 mV and 0.207, respectively were observed in blank CTS and CTS-TGA nanoparticles, respectively. All extracts from the medicinal plants showed anti-proliferative activity on HeLa and HepG2 cancer cell lines. The CTS and CTS-TGA nanoparticles can significantly enhance anti-proliferative activity of the extracts on Hela and HepG2 cancer cells (p < 0.05). The extract of T. triandra loaded in CTS nanoparticles and the extract of A. marmelos loaded in CTS-TGA nanoparticles exhibited the highest decreased cell viability of 7.28 and 6.37 folds, respectively. The in vitro kinetic release and the intestinal membrane permeation of the medicinal plant extracts determined as quinazoline through the rat intestinal membrane by Ussing type chamber across the freshly excised rat intestinal mucosa were similar to quinazoline with the release of zero order plot, whereas the release of those loaded in the CTS and CTS-TGA nanoparticles were conformed with the Higuchi's equation. Thiolation significantly enhanced the permeation of the CTS nanoparticles with the highest transport enhancement ratio (R) of 1.45 (p < 0.05). The CTS-TGA nanoparticles significantly improved the permeation of quinazoline with the highest (R) of 1.62 (p < 0.05). This study has demonstrated the anti-proliferative activity on human cancer cell lines and permeation enhancements of the Thai anti-cancer medicinal plant extracts by loading in the CTS and CTS-TGA nanoparticles, which can be further developed to oral natural products. © 2012 American Scientific Publishers. All rights reserved. 2018-09-04T06:03:40Z 2018-09-04T06:03:40Z 2012-10-01 Journal 19367317 19366612 2-s2.0-84870900773 10.1166/asl.2012.4270 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84870900773&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51519
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Computer Science
Energy
Engineering
Environmental Science
Mathematics
Social Sciences
spellingShingle Computer Science
Energy
Engineering
Environmental Science
Mathematics
Social Sciences
Korawinwich Boonpisuttinant
Aranya Manosroi
Deni Rahmat
Jiradej Manosroi
Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles
description Chitosan (CTS) and chitosan-thioglycolic acid (CTS-TGA) nanoparticles loaded with four aqueous extracts of Thai anti-cancer medicinal plants were prepared by ionic interaction with tripolyphosphate (TPP). The averages sizes, zeta-potentials and PDI of the CTS and CTS-TGA nanoparticles loaded with the aqueous extracts were in range of 309.09±66.3 to 394.6±71.3 nm, +1.73±2.39 to +2.39±0.79 mV and 0.354±0.021 to 0.555± 0.012; and 225.0±38.7 to 311.5±51.4 nm, 1.46±0.63 to 3.59±0.45 and 0.229±0.069 to 0.398±0.087, respectively, whereas 244.8±48.1 nm, +3.56±0.71 mV and 0.350; and 174.2±23.2 nm, +3.22±0.85 mV and 0.207, respectively were observed in blank CTS and CTS-TGA nanoparticles, respectively. All extracts from the medicinal plants showed anti-proliferative activity on HeLa and HepG2 cancer cell lines. The CTS and CTS-TGA nanoparticles can significantly enhance anti-proliferative activity of the extracts on Hela and HepG2 cancer cells (p < 0.05). The extract of T. triandra loaded in CTS nanoparticles and the extract of A. marmelos loaded in CTS-TGA nanoparticles exhibited the highest decreased cell viability of 7.28 and 6.37 folds, respectively. The in vitro kinetic release and the intestinal membrane permeation of the medicinal plant extracts determined as quinazoline through the rat intestinal membrane by Ussing type chamber across the freshly excised rat intestinal mucosa were similar to quinazoline with the release of zero order plot, whereas the release of those loaded in the CTS and CTS-TGA nanoparticles were conformed with the Higuchi's equation. Thiolation significantly enhanced the permeation of the CTS nanoparticles with the highest transport enhancement ratio (R) of 1.45 (p < 0.05). The CTS-TGA nanoparticles significantly improved the permeation of quinazoline with the highest (R) of 1.62 (p < 0.05). This study has demonstrated the anti-proliferative activity on human cancer cell lines and permeation enhancements of the Thai anti-cancer medicinal plant extracts by loading in the CTS and CTS-TGA nanoparticles, which can be further developed to oral natural products. © 2012 American Scientific Publishers. All rights reserved.
format Journal
author Korawinwich Boonpisuttinant
Aranya Manosroi
Deni Rahmat
Jiradej Manosroi
author_facet Korawinwich Boonpisuttinant
Aranya Manosroi
Deni Rahmat
Jiradej Manosroi
author_sort Korawinwich Boonpisuttinant
title Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles
title_short Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles
title_full Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles
title_fullStr Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles
title_full_unstemmed Enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the MANOSROI II database by loading in chitosan-thioglycolic acid (TGA) nanoparticles
title_sort enhancement of in vitro anti-proliferative activity and intestinal membrane permeation of thai medicinal plant extracts selected from the manosroi ii database by loading in chitosan-thioglycolic acid (tga) nanoparticles
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84870900773&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51519
_version_ 1681423784478769152