A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems
A Fast synchronously rotating reference frame (FSRRF)-based voltage sag detection under practical grid voltages for voltage sag compensation systems is proposed in this paper. The proposed voltage sag detection is also based on abc-dq transformation as conventional synchronously rotating reference f...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864708708&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51606 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-51606 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-516062018-09-04T06:05:16Z A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems Y. Kumsuwan Y. Sillapawicharn Engineering A Fast synchronously rotating reference frame (FSRRF)-based voltage sag detection under practical grid voltages for voltage sag compensation systems is proposed in this paper. The proposed voltage sag detection is also based on abc-dq transformation as conventional synchronously rotating reference frame (CSRRF)-based voltage sag detection but adding of 2ω component eliminator (2ω component is generated by synchronously rotating reference frame-based transformation in unbalance voltage sag conditions) and dedicated band-stop filter (BSF) (to exclude the effect from harmonic voltages in practical grid voltages) then very fast voltage sag detection time under practical grid voltages condition is achieved. The computer software simulation and the experimentation are made to investigate and verify the operation of proposed voltage sag detection. The detection time of FSRRF-based voltage sag detection is around one eighth of CSRRF-based voltage sag detection in the case of single-phase voltage sag and around one fifth in the case of two-phase voltage sag. This voltage sag detection can be used in any voltage sag or interruption compensation systems to improve their performance. 2018-09-04T06:05:16Z 2018-09-04T06:05:16Z 2012-08-13 Conference Proceeding 2-s2.0-84864708708 10.1049/cp.2012.0348 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864708708&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51606 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Engineering |
spellingShingle |
Engineering Y. Kumsuwan Y. Sillapawicharn A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
description |
A Fast synchronously rotating reference frame (FSRRF)-based voltage sag detection under practical grid voltages for voltage sag compensation systems is proposed in this paper. The proposed voltage sag detection is also based on abc-dq transformation as conventional synchronously rotating reference frame (CSRRF)-based voltage sag detection but adding of 2ω component eliminator (2ω component is generated by synchronously rotating reference frame-based transformation in unbalance voltage sag conditions) and dedicated band-stop filter (BSF) (to exclude the effect from harmonic voltages in practical grid voltages) then very fast voltage sag detection time under practical grid voltages condition is achieved. The computer software simulation and the experimentation are made to investigate and verify the operation of proposed voltage sag detection. The detection time of FSRRF-based voltage sag detection is around one eighth of CSRRF-based voltage sag detection in the case of single-phase voltage sag and around one fifth in the case of two-phase voltage sag. This voltage sag detection can be used in any voltage sag or interruption compensation systems to improve their performance. |
format |
Conference Proceeding |
author |
Y. Kumsuwan Y. Sillapawicharn |
author_facet |
Y. Kumsuwan Y. Sillapawicharn |
author_sort |
Y. Kumsuwan |
title |
A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
title_short |
A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
title_full |
A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
title_fullStr |
A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
title_full_unstemmed |
A fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
title_sort |
fast synchronously rotating reference frame-based voltage sag detection under practical grid voltages for voltage sag compensation systems |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84864708708&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51606 |
_version_ |
1681423800061657088 |