Connectedness of endo-cayley digraphs of right(left) zero union of semigroups

Let S be a finite semigroup, A a subset of S and f an endomor- phism on S. The endo-Cayley digraph of S corresponding to a connecting set A and an endomorphism f, denoted by endo - Cay f (S,A) is a digraph whose vertex set is S and a vertex u is adjacent to vertex v if and only if v = f(u)a for some...

Full description

Saved in:
Bibliographic Details
Main Authors: C. Promsakon, S. Panma
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861392491&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51797
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-51797
record_format dspace
spelling th-cmuir.6653943832-517972018-09-04T06:09:21Z Connectedness of endo-cayley digraphs of right(left) zero union of semigroups C. Promsakon S. Panma Mathematics Let S be a finite semigroup, A a subset of S and f an endomor- phism on S. The endo-Cayley digraph of S corresponding to a connecting set A and an endomorphism f, denoted by endo - Cay f (S,A) is a digraph whose vertex set is S and a vertex u is adjacent to vertex v if and only if v = f(u)a for some a ∈ A. In this paper, we study about the connected properties of endo-Cayley di-graphs of cartesian product between semigroups and right(left) zero semigroups. We show the type of connected that they can be. Moreover, we also generalize endo-Cayley digraphs of that product into tensor product resulting graphs. © 2012 Academic Publications, Ltd. 2018-09-04T06:09:21Z 2018-09-04T06:09:21Z 2012-05-28 Journal 13118080 2-s2.0-84861392491 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861392491&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/51797
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
C. Promsakon
S. Panma
Connectedness of endo-cayley digraphs of right(left) zero union of semigroups
description Let S be a finite semigroup, A a subset of S and f an endomor- phism on S. The endo-Cayley digraph of S corresponding to a connecting set A and an endomorphism f, denoted by endo - Cay f (S,A) is a digraph whose vertex set is S and a vertex u is adjacent to vertex v if and only if v = f(u)a for some a ∈ A. In this paper, we study about the connected properties of endo-Cayley di-graphs of cartesian product between semigroups and right(left) zero semigroups. We show the type of connected that they can be. Moreover, we also generalize endo-Cayley digraphs of that product into tensor product resulting graphs. © 2012 Academic Publications, Ltd.
format Journal
author C. Promsakon
S. Panma
author_facet C. Promsakon
S. Panma
author_sort C. Promsakon
title Connectedness of endo-cayley digraphs of right(left) zero union of semigroups
title_short Connectedness of endo-cayley digraphs of right(left) zero union of semigroups
title_full Connectedness of endo-cayley digraphs of right(left) zero union of semigroups
title_fullStr Connectedness of endo-cayley digraphs of right(left) zero union of semigroups
title_full_unstemmed Connectedness of endo-cayley digraphs of right(left) zero union of semigroups
title_sort connectedness of endo-cayley digraphs of right(left) zero union of semigroups
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861392491&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51797
_version_ 1681423834734919680