Green's relations on HypG(2)

A generalized hypersubstitution of type τ = (2) is a mapping which maps the binary operation symbol f to a term σ(f) which does not necessarily preserve the arity. Any such τ can be inductively extended to a map σ on the set of all terms of type τ = (2), and any two such extensions can be composed i...

Full description

Saved in:
Bibliographic Details
Main Authors: Wattapong Puninagool, Sorasak Leeratanavalee
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84861939567&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51813
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:A generalized hypersubstitution of type τ = (2) is a mapping which maps the binary operation symbol f to a term σ(f) which does not necessarily preserve the arity. Any such τ can be inductively extended to a map σ on the set of all terms of type τ = (2), and any two such extensions can be composed in a natural way. Thus, the set HypG(2) of all generalized hypersubstitutions of type τ = (2) forms a monoid. Green's relations on the monoid of all hypersubstitutions of type τ = (2) were studied by K. Denecke and Sh.L. Wismath. In this paper we describe the classes of generalized hypersubstitutions of type τ = (2) under Green's relations.