Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition
Fall detection of elderly in home environment is an important research area. The fall detection is a part of the human action recognition. In this paper, a human action detection using the fuzzy clustering algorithm with the fuzzy K-nearest neighbor from view-invariant human motion analysis is imple...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84887837062&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52426 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-52426 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-524262018-09-04T09:31:14Z Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition Ritipong Wongkhuenkaew Sansanee Auephanwiriyakul Nipon Theera-Umpon Computer Science Mathematics Fall detection of elderly in home environment is an important research area. The fall detection is a part of the human action recognition. In this paper, a human action detection using the fuzzy clustering algorithm with the fuzzy K-nearest neighbor from view-invariant human motion analysis is implemented. In particular, the Hu moment invariant features are computed. Then principal component analysis is utilized to select the principal components. The fuzzy clustering algorithm (either fuzzy C-means, Gustafson and Kessel, or Gath and Geva) is implemented on each class to select the prototypes representing the class. From the results, we found that the best classification rate on the validation set is around 99.33% to 100%, and the classification rate on the blind test data set is around 90%. We also compare the result from fuzzy K-nearest neighbor with that from K-nearest neighbor. The fuzzy K-nearest neighbor result is better as expected. © 2013 IEEE. 2018-09-04T09:25:13Z 2018-09-04T09:25:13Z 2013-11-22 Conference Proceeding 10987584 2-s2.0-84887837062 10.1109/FUZZ-IEEE.2013.6622542 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84887837062&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52426 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Computer Science Mathematics |
spellingShingle |
Computer Science Mathematics Ritipong Wongkhuenkaew Sansanee Auephanwiriyakul Nipon Theera-Umpon Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition |
description |
Fall detection of elderly in home environment is an important research area. The fall detection is a part of the human action recognition. In this paper, a human action detection using the fuzzy clustering algorithm with the fuzzy K-nearest neighbor from view-invariant human motion analysis is implemented. In particular, the Hu moment invariant features are computed. Then principal component analysis is utilized to select the principal components. The fuzzy clustering algorithm (either fuzzy C-means, Gustafson and Kessel, or Gath and Geva) is implemented on each class to select the prototypes representing the class. From the results, we found that the best classification rate on the validation set is around 99.33% to 100%, and the classification rate on the blind test data set is around 90%. We also compare the result from fuzzy K-nearest neighbor with that from K-nearest neighbor. The fuzzy K-nearest neighbor result is better as expected. © 2013 IEEE. |
format |
Conference Proceeding |
author |
Ritipong Wongkhuenkaew Sansanee Auephanwiriyakul Nipon Theera-Umpon |
author_facet |
Ritipong Wongkhuenkaew Sansanee Auephanwiriyakul Nipon Theera-Umpon |
author_sort |
Ritipong Wongkhuenkaew |
title |
Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition |
title_short |
Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition |
title_full |
Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition |
title_fullStr |
Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition |
title_full_unstemmed |
Multi-prototype fuzzy clustering with fuzzy K-nearest neighbor for off-line human action recognition |
title_sort |
multi-prototype fuzzy clustering with fuzzy k-nearest neighbor for off-line human action recognition |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84887837062&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52426 |
_version_ |
1681423948905971712 |