Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles

Zinc sulfide (ZnS) nanoparticles prepared by hydrothermal synthesis were subsequentially impregnated with different iron amounts (0.5-5.0 at%) to obtain Fe-loaded ZnS nanoparticles. Phase composition, crystallinity, crystal size, and morphology of 0.5-5.0 at% Fe-loaded ZnS nanoparticles were charact...

Full description

Saved in:
Bibliographic Details
Main Authors: Natda Wetchakun, Burapat Incessungvorn, Khatcharin Wetchakun, Sukon Phanichphant
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84874300737&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52567
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-52567
record_format dspace
spelling th-cmuir.6653943832-525672018-09-04T09:36:55Z Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles Natda Wetchakun Burapat Incessungvorn Khatcharin Wetchakun Sukon Phanichphant Engineering Materials Science Physics and Astronomy Zinc sulfide (ZnS) nanoparticles prepared by hydrothermal synthesis were subsequentially impregnated with different iron amounts (0.5-5.0 at%) to obtain Fe-loaded ZnS nanoparticles. Phase composition, crystallinity, crystal size, and morphology of 0.5-5.0 at% Fe-loaded ZnS nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). Specific surface area determined by the Brunauer, Emmett and Teller (BET) method was found to be in the range of 85-197 m2/g. The average particle size obtained from TEM analysis of pure ZnS and 2.0 at% Fe-loaded ZnS nanoparticles was 5-20 nm. The optical absorption properties of the samples measured by UV-vis diffuse reflectance spectroscopy (UV-vis DRS) clearly indicated the bathochromic shift upon loading ZnS with Fe. Photocatalytic activities of pure ZnS and Fe-loaded ZnS nanoparticles were examined by studying the mineralization of oxalic acid and formic acid under UVA illumination. It was found that 2.0 at% Fe-loaded ZnS sample exhibited the highest degradation activity possibly due to the presence of Fe in an optimum amount and the increases of surface area and light absorption in UVA region. © 2013 Elsevier Ltd. 2018-09-04T09:27:11Z 2018-09-04T09:27:11Z 2013-04-01 Journal 00255408 2-s2.0-84874300737 10.1016/j.materresbull.2013.01.004 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84874300737&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52567
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Engineering
Materials Science
Physics and Astronomy
spellingShingle Engineering
Materials Science
Physics and Astronomy
Natda Wetchakun
Burapat Incessungvorn
Khatcharin Wetchakun
Sukon Phanichphant
Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles
description Zinc sulfide (ZnS) nanoparticles prepared by hydrothermal synthesis were subsequentially impregnated with different iron amounts (0.5-5.0 at%) to obtain Fe-loaded ZnS nanoparticles. Phase composition, crystallinity, crystal size, and morphology of 0.5-5.0 at% Fe-loaded ZnS nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). Specific surface area determined by the Brunauer, Emmett and Teller (BET) method was found to be in the range of 85-197 m2/g. The average particle size obtained from TEM analysis of pure ZnS and 2.0 at% Fe-loaded ZnS nanoparticles was 5-20 nm. The optical absorption properties of the samples measured by UV-vis diffuse reflectance spectroscopy (UV-vis DRS) clearly indicated the bathochromic shift upon loading ZnS with Fe. Photocatalytic activities of pure ZnS and Fe-loaded ZnS nanoparticles were examined by studying the mineralization of oxalic acid and formic acid under UVA illumination. It was found that 2.0 at% Fe-loaded ZnS sample exhibited the highest degradation activity possibly due to the presence of Fe in an optimum amount and the increases of surface area and light absorption in UVA region. © 2013 Elsevier Ltd.
format Journal
author Natda Wetchakun
Burapat Incessungvorn
Khatcharin Wetchakun
Sukon Phanichphant
author_facet Natda Wetchakun
Burapat Incessungvorn
Khatcharin Wetchakun
Sukon Phanichphant
author_sort Natda Wetchakun
title Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles
title_short Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles
title_full Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles
title_fullStr Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles
title_full_unstemmed Photocatalytic mineralization of carboxylic acids over Fe-loaded ZnS nanoparticles
title_sort photocatalytic mineralization of carboxylic acids over fe-loaded zns nanoparticles
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84874300737&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/52567
_version_ 1681423974655852544