Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell
The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking techniqu...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879415409&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52671 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-52671 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-526712018-09-04T09:36:39Z Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell Kritsada Hongsith Niyom Hongsith Duangmanee Wongratanaphisan Atcharawon Gardchareon Surachet Phadungdhitidhada Pisith Singjai Supab Choopun Materials Science Physics and Astronomy The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking technique onto F-doped tin oxide (FTO) glass substrate and its thickness was controlled by number of sparking cycles for 0, 10, 25, 50 and 100 rounds under atmospheric pressure. Then, ZP or ZNP was screened on to ZN to form double-layered photoelectrode. Here, the DSSC structures were FTO/double-layered ZnO/Eosin Y/electrolyte/Pt counterelectrode. The best results of DSSCs were observed with Jscof 4.71 mA/cm2and 5.56 mA/cm2and photoconversion efficiency of 1.11% and 1.14% at 50 sparking cycles for ZP and ZNP over-layers, respectively. The efficiency enhancement can be explained by combination effects of electron and light scattering. Moreover, the modified equation of short circuit current density was developed and effectively used to explain the efficiency enhancement. © 2013 Elsevier B.V. All rights reserved. 2018-09-04T09:29:44Z 2018-09-04T09:29:44Z 2013-07-31 Journal 00406090 2-s2.0-84879415409 10.1016/j.tsf.2013.04.150 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879415409&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52671 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Materials Science Physics and Astronomy |
spellingShingle |
Materials Science Physics and Astronomy Kritsada Hongsith Niyom Hongsith Duangmanee Wongratanaphisan Atcharawon Gardchareon Surachet Phadungdhitidhada Pisith Singjai Supab Choopun Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell |
description |
The semiconducting layers of ZnO nanoparticles (ZN), ZnO powder (ZP) and ZnO nanopowder (ZNP) were designed and fabricated for double-layered semiconducting photoelectrode in dye-sensitized solar cells (DSSCs). The under-layer was ZN, which was prepared by simple and cost-effective sparking technique onto F-doped tin oxide (FTO) glass substrate and its thickness was controlled by number of sparking cycles for 0, 10, 25, 50 and 100 rounds under atmospheric pressure. Then, ZP or ZNP was screened on to ZN to form double-layered photoelectrode. Here, the DSSC structures were FTO/double-layered ZnO/Eosin Y/electrolyte/Pt counterelectrode. The best results of DSSCs were observed with Jscof 4.71 mA/cm2and 5.56 mA/cm2and photoconversion efficiency of 1.11% and 1.14% at 50 sparking cycles for ZP and ZNP over-layers, respectively. The efficiency enhancement can be explained by combination effects of electron and light scattering. Moreover, the modified equation of short circuit current density was developed and effectively used to explain the efficiency enhancement. © 2013 Elsevier B.V. All rights reserved. |
format |
Journal |
author |
Kritsada Hongsith Niyom Hongsith Duangmanee Wongratanaphisan Atcharawon Gardchareon Surachet Phadungdhitidhada Pisith Singjai Supab Choopun |
author_facet |
Kritsada Hongsith Niyom Hongsith Duangmanee Wongratanaphisan Atcharawon Gardchareon Surachet Phadungdhitidhada Pisith Singjai Supab Choopun |
author_sort |
Kritsada Hongsith |
title |
Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell |
title_short |
Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell |
title_full |
Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell |
title_fullStr |
Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell |
title_full_unstemmed |
Sparking deposited ZnO nanoparticles as double-layered photoelectrode in ZnO dye-sensitized solar cell |
title_sort |
sparking deposited zno nanoparticles as double-layered photoelectrode in zno dye-sensitized solar cell |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84879415409&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/52671 |
_version_ |
1681423993732595712 |