Learning kernel logistic regression in the presence of class label noise
The classical machinery of supervised learning machines relies on a correct set of training labels. Unfortunately, there is no guarantee that all of the labels are correct. Labelling errors are increasingly noticeable in today's classification tasks, as the scale and difficulty of these tasks i...
Saved in:
Main Authors: | Jakramate Bootkrajang, Ata Kabán |
---|---|
格式: | 雜誌 |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84904348097&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/53422 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Learning kernel logistic regression in the presence of class label noise
由: Jakramate Bootkrajang, et al.
出版: (2018) -
A generalised label noise model for classification in the presence of annotation errors
由: Jakramate Bootkrajang
出版: (2018) -
A generalised label noise model for classification
由: Jakramate Bootkrajang
出版: (2018) -
A generalised label noise model for classification
由: Jakramate Bootkrajang
出版: (2018) -
Towards instance-dependent label noise-tolerant classification: a probabilistic approach
由: Jakramate Bootkrajang, et al.
出版: (2018)