Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid
ZnO nanostructures were synthesized by thermal oxidation reaction from zinc powder and then impregnated by gold colloid. The gold colloid was prepared by chemical reduction technique and had red color. The heating temperature and sintering time of thermal oxidation were 700 °C and 24 hours, respecti...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-62949215770&partnerID=40&md5=19dd4468309b707db87822594a02f915 http://cmuir.cmu.ac.th/handle/6653943832/5359 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-5359 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-53592014-08-30T02:56:27Z Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid Wongrat E. Pimpang P. Mangkorntong N. Choopun S. ZnO nanostructures were synthesized by thermal oxidation reaction from zinc powder and then impregnated by gold colloid. The gold colloid was prepared by chemical reduction technique and had red color. The heating temperature and sintering time of thermal oxidation were 700 °C and 24 hours, respectively under oxygen atmosphere. The morphology of ZnO nanostructures and ZnO impregnated gold colloid were studied by field emission scanning electron microscope (FE-SEM). The diameter and length of pure ZnO and ZnO impregnated gold colloid were about the same value and were in the range of 100-500 nm and 2.0-7.0 μm, respectively. The ethanol sensing properties of ZnO impregnated by gold colloid were tested in ethanol atmosphere at ethanol concentrations of 1000 ppm and at an operating temperature of 260-360 °C. It was found that the sensitivity and response time were improved for gold impregnated sensor with an optimum operating temperature of 300° C due to the enhanced reaction between the ethanol and the adsorbed oxygen at an optimum temperature. © 2008 Trans Tech Publications, Switzerland. 2014-08-30T02:56:27Z 2014-08-30T02:56:27Z 2008 Conference Paper 9780878493562 10226680 75596 http://www.scopus.com/inward/record.url?eid=2-s2.0-62949215770&partnerID=40&md5=19dd4468309b707db87822594a02f915 http://cmuir.cmu.ac.th/handle/6653943832/5359 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
ZnO nanostructures were synthesized by thermal oxidation reaction from zinc powder and then impregnated by gold colloid. The gold colloid was prepared by chemical reduction technique and had red color. The heating temperature and sintering time of thermal oxidation were 700 °C and 24 hours, respectively under oxygen atmosphere. The morphology of ZnO nanostructures and ZnO impregnated gold colloid were studied by field emission scanning electron microscope (FE-SEM). The diameter and length of pure ZnO and ZnO impregnated gold colloid were about the same value and were in the range of 100-500 nm and 2.0-7.0 μm, respectively. The ethanol sensing properties of ZnO impregnated by gold colloid were tested in ethanol atmosphere at ethanol concentrations of 1000 ppm and at an operating temperature of 260-360 °C. It was found that the sensitivity and response time were improved for gold impregnated sensor with an optimum operating temperature of 300° C due to the enhanced reaction between the ethanol and the adsorbed oxygen at an optimum temperature. © 2008 Trans Tech Publications, Switzerland. |
format |
Conference or Workshop Item |
author |
Wongrat E. Pimpang P. Mangkorntong N. Choopun S. |
spellingShingle |
Wongrat E. Pimpang P. Mangkorntong N. Choopun S. Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid |
author_facet |
Wongrat E. Pimpang P. Mangkorntong N. Choopun S. |
author_sort |
Wongrat E. |
title |
Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid |
title_short |
Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid |
title_full |
Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid |
title_fullStr |
Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid |
title_full_unstemmed |
Ethanol sensing characteristics of ZnO nanostructures impregnated by gold colloid |
title_sort |
ethanol sensing characteristics of zno nanostructures impregnated by gold colloid |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-62949215770&partnerID=40&md5=19dd4468309b707db87822594a02f915 http://cmuir.cmu.ac.th/handle/6653943832/5359 |
_version_ |
1681420410573291520 |