Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates

In this research, the effects on reaction temperature and length of time on Bi2WO6nanoplates by hydrothermal synthesis on morphologies and photocatalytic properties were studied. The products obtained at different reaction temperature and reaction time were characterized by XRD, Raman, FTIR, SEM, an...

Full description

Saved in:
Bibliographic Details
Main Authors: Anukorn Phuruangrat, Phattranit Dumrongrojthanath, Nuengruethai Ekthammathat, Somchai Thongtem, Titipun Thongtem
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901747100&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53654
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-53654
record_format dspace
spelling th-cmuir.6653943832-536542018-09-04T09:54:24Z Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates Anukorn Phuruangrat Phattranit Dumrongrojthanath Nuengruethai Ekthammathat Somchai Thongtem Titipun Thongtem Materials Science In this research, the effects on reaction temperature and length of time on Bi2WO6nanoplates by hydrothermal synthesis on morphologies and photocatalytic properties were studied. The products obtained at different reaction temperature and reaction time were characterized by XRD, Raman, FTIR, SEM, and TEM techniques. The photocatalytic properties of the samples were measured by decomposing the rhodamine-B organic dye. XRD pattern was specified as pure orthorhombic well-crystallized Bi2WO6phase for the 180°C and 20 h synthesis. Its FTIR spectrum shows main absorption bands at 400-1000 cm-1, assigned to Bi-O stretching, W-O stretching, and W-O-W bridging stretching modes. SEM and TEM analyses show that the product was composed of nanoplates. Photocatalytic activity of Bi2WO6nanoplates shows the 98.24% degradation of rhodamine-B under the Xe light irradiation within 100 min. © 2014 Anukorn Phuruangrat et al. 2018-09-04T09:54:24Z 2018-09-04T09:54:24Z 2014-01-01 Journal 16874129 16874110 2-s2.0-84901747100 10.1155/2014/138561 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901747100&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/53654
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Materials Science
spellingShingle Materials Science
Anukorn Phuruangrat
Phattranit Dumrongrojthanath
Nuengruethai Ekthammathat
Somchai Thongtem
Titipun Thongtem
Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates
description In this research, the effects on reaction temperature and length of time on Bi2WO6nanoplates by hydrothermal synthesis on morphologies and photocatalytic properties were studied. The products obtained at different reaction temperature and reaction time were characterized by XRD, Raman, FTIR, SEM, and TEM techniques. The photocatalytic properties of the samples were measured by decomposing the rhodamine-B organic dye. XRD pattern was specified as pure orthorhombic well-crystallized Bi2WO6phase for the 180°C and 20 h synthesis. Its FTIR spectrum shows main absorption bands at 400-1000 cm-1, assigned to Bi-O stretching, W-O stretching, and W-O-W bridging stretching modes. SEM and TEM analyses show that the product was composed of nanoplates. Photocatalytic activity of Bi2WO6nanoplates shows the 98.24% degradation of rhodamine-B under the Xe light irradiation within 100 min. © 2014 Anukorn Phuruangrat et al.
format Journal
author Anukorn Phuruangrat
Phattranit Dumrongrojthanath
Nuengruethai Ekthammathat
Somchai Thongtem
Titipun Thongtem
author_facet Anukorn Phuruangrat
Phattranit Dumrongrojthanath
Nuengruethai Ekthammathat
Somchai Thongtem
Titipun Thongtem
author_sort Anukorn Phuruangrat
title Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates
title_short Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates
title_full Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates
title_fullStr Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates
title_full_unstemmed Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi<inf>2</inf>WO<inf>6</inf>nanoplates
title_sort hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of bi<inf>2</inf>wo<inf>6</inf>nanoplates
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84901747100&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53654
_version_ 1681424175583985664