Metal cluster-deposited graphene as an adsorptive material for m-xylene

© The Royal Society of Chemistry and the Centre National de la Recherche Scientifique. Tetramer clusters of platinum (Pt), palladium (Pd), gold (Au) and silver (Ag) deposited on pristine and defective graphenes were studied as potential adsorptive materials for m-xylene using density functional theo...

Full description

Saved in:
Bibliographic Details
Main Authors: Anchalee Junkaew, Chompoonut Rungnim, Manaschai Kunaseth, Raymundo Arróyave, Vinich Promarak, Nawee Kungwan, Supawadee Namuangruk
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947968712&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54243
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-54243
record_format dspace
spelling th-cmuir.6653943832-542432018-09-04T10:17:37Z Metal cluster-deposited graphene as an adsorptive material for m-xylene Anchalee Junkaew Chompoonut Rungnim Manaschai Kunaseth Raymundo Arróyave Vinich Promarak Nawee Kungwan Supawadee Namuangruk Chemical Engineering Chemistry Materials Science © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique. Tetramer clusters of platinum (Pt), palladium (Pd), gold (Au) and silver (Ag) deposited on pristine and defective graphenes were studied as potential adsorptive materials for m-xylene using density functional theory (DFT) calculations including van der Waals contributions to the Hamiltonian. Structural, energetic and electronic (i.e. d-band center, partial density of state and explicit charge) properties have been investigated for understanding the m-xylene adsorption process. The m-xylene adsorption capability of these materials has been compared. The calculation results revealed that Pt4- and Pd4-DG adsorb m-xylene via a chemisorption process, while Au4- and Ag4-DG adsorb m-xylene via physisorption. These insights are valuable for applying and developing carbon-based materials for volatile organic compound (VOC) removal applications, since physisorption-driven materials are suitable as sorbents while their chemisorption counterparts are suitable as catalysts in an oxidation reaction. Those properties in turn can be tuned by modulating metal adsorption on the carbon-based materials. 2018-09-04T10:09:58Z 2018-09-04T10:09:58Z 2015-10-05 Journal 13699261 11440546 2-s2.0-84947968712 10.1039/c5nj01975c https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947968712&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54243
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Chemical Engineering
Chemistry
Materials Science
spellingShingle Chemical Engineering
Chemistry
Materials Science
Anchalee Junkaew
Chompoonut Rungnim
Manaschai Kunaseth
Raymundo Arróyave
Vinich Promarak
Nawee Kungwan
Supawadee Namuangruk
Metal cluster-deposited graphene as an adsorptive material for m-xylene
description © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique. Tetramer clusters of platinum (Pt), palladium (Pd), gold (Au) and silver (Ag) deposited on pristine and defective graphenes were studied as potential adsorptive materials for m-xylene using density functional theory (DFT) calculations including van der Waals contributions to the Hamiltonian. Structural, energetic and electronic (i.e. d-band center, partial density of state and explicit charge) properties have been investigated for understanding the m-xylene adsorption process. The m-xylene adsorption capability of these materials has been compared. The calculation results revealed that Pt4- and Pd4-DG adsorb m-xylene via a chemisorption process, while Au4- and Ag4-DG adsorb m-xylene via physisorption. These insights are valuable for applying and developing carbon-based materials for volatile organic compound (VOC) removal applications, since physisorption-driven materials are suitable as sorbents while their chemisorption counterparts are suitable as catalysts in an oxidation reaction. Those properties in turn can be tuned by modulating metal adsorption on the carbon-based materials.
format Journal
author Anchalee Junkaew
Chompoonut Rungnim
Manaschai Kunaseth
Raymundo Arróyave
Vinich Promarak
Nawee Kungwan
Supawadee Namuangruk
author_facet Anchalee Junkaew
Chompoonut Rungnim
Manaschai Kunaseth
Raymundo Arróyave
Vinich Promarak
Nawee Kungwan
Supawadee Namuangruk
author_sort Anchalee Junkaew
title Metal cluster-deposited graphene as an adsorptive material for m-xylene
title_short Metal cluster-deposited graphene as an adsorptive material for m-xylene
title_full Metal cluster-deposited graphene as an adsorptive material for m-xylene
title_fullStr Metal cluster-deposited graphene as an adsorptive material for m-xylene
title_full_unstemmed Metal cluster-deposited graphene as an adsorptive material for m-xylene
title_sort metal cluster-deposited graphene as an adsorptive material for m-xylene
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947968712&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54243
_version_ 1681424284777447424