Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells
© 2015 The Authors. Pt<inf>x</inf>Pd<inf>y</inf> catalysts with various compositions onto functionalized carbon nanotubes (CNTs) were prepared by improved polyol method to study their electrocatalytic activities toward a formic acid oxidation. Carbon nanotubes as supports (CN...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84936804032&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54295 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-54295 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-542952018-09-04T10:11:07Z Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells Suwaphid Themsirimongkon Thapanee Sarakonsri Somchai Lapanantnoppakhun Surin Saipanya Chemistry © 2015 The Authors. Pt<inf>x</inf>Pd<inf>y</inf> catalysts with various compositions onto functionalized carbon nanotubes (CNTs) were prepared by improved polyol method to study their electrocatalytic activities toward a formic acid oxidation. Carbon nanotubes as supports (CNTs) were functionalized by acid solutions and the different atomic weight ratios of Pt to Pd supported the functionalized CNTs were prepared. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate the catalyst morphologies and particle size distributions. A uniform dispersion of alloyed microstructure Pt<inf>x</inf>Pd<inf>y</inf> particles with diameters ranging between 2-4 nm was obtained. The effect of different surface compositions of various Pt<inf>x</inf>Pd<inf>y</inf> /CNTs alloy particles on electrocatalytic formic acid oxidation were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The results showed an excellent activities and stabilities which are indicated by its lower onset potential and higher current density. Moreover, the PdPt/CNTs catalyst was obtained higher superior electrocatalytic activity than the other Pt<inf>x</inf>Pd<inf>y</inf> catalysts and the commercial PtRu/C. 2018-09-04T10:11:07Z 2018-09-04T10:11:07Z 2015-01-01 Journal 14523981 2-s2.0-84936804032 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84936804032&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54295 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemistry |
spellingShingle |
Chemistry Suwaphid Themsirimongkon Thapanee Sarakonsri Somchai Lapanantnoppakhun Surin Saipanya Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
description |
© 2015 The Authors. Pt<inf>x</inf>Pd<inf>y</inf> catalysts with various compositions onto functionalized carbon nanotubes (CNTs) were prepared by improved polyol method to study their electrocatalytic activities toward a formic acid oxidation. Carbon nanotubes as supports (CNTs) were functionalized by acid solutions and the different atomic weight ratios of Pt to Pd supported the functionalized CNTs were prepared. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate the catalyst morphologies and particle size distributions. A uniform dispersion of alloyed microstructure Pt<inf>x</inf>Pd<inf>y</inf> particles with diameters ranging between 2-4 nm was obtained. The effect of different surface compositions of various Pt<inf>x</inf>Pd<inf>y</inf> /CNTs alloy particles on electrocatalytic formic acid oxidation were investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The results showed an excellent activities and stabilities which are indicated by its lower onset potential and higher current density. Moreover, the PdPt/CNTs catalyst was obtained higher superior electrocatalytic activity than the other Pt<inf>x</inf>Pd<inf>y</inf> catalysts and the commercial PtRu/C. |
format |
Journal |
author |
Suwaphid Themsirimongkon Thapanee Sarakonsri Somchai Lapanantnoppakhun Surin Saipanya |
author_facet |
Suwaphid Themsirimongkon Thapanee Sarakonsri Somchai Lapanantnoppakhun Surin Saipanya |
author_sort |
Suwaphid Themsirimongkon |
title |
Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
title_short |
Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
title_full |
Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
title_fullStr |
Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
title_full_unstemmed |
Synthesis of Pt<inf>x</inf>Pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
title_sort |
synthesis of pt<inf>x</inf>pd<inf>y</inf> nanoparticles decorated functionalized carbon nanotubes as highly anodic catalysts for formic acid fuel cells |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84936804032&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54295 |
_version_ |
1681424294432735232 |