Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites
Lead zirconate titanate (PZT)-Portland cement (PC) composites were produced and successfully poled at different poling field and time. The effect of polarization on the microstructure and piezoelectric properties were then investigated. It was found that, at a fixed poling field up to 2 kV/mm, the p...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-62949155031&partnerID=40&md5=9f307e8e96a068c13fc28f8a6ba845af http://cmuir.cmu.ac.th/handle/6653943832/5431 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-5431 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-54312014-08-30T02:56:31Z Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites Chaipanich A. Jaitanong N. Lead zirconate titanate (PZT)-Portland cement (PC) composites were produced and successfully poled at different poling field and time. The effect of polarization on the microstructure and piezoelectric properties were then investigated. It was found that, at a fixed poling field up to 2 kV/mm, the piezoelectric coefficient (d33) was found to increase with poling time. The optimum poling time was found at 45 minutes where d33 value is 42 pC/N. The optimum and most practical poling field found for the composite was at 2 kV/mm. Lower poling field would give the composite lower piezoelectricity and poling field that is too high would result to breakdown of samples. Therefore, from these results, a poling field of 2 kV/mm at 45 minutes would be the ideal polarization condition used in poling PZT-PC composites. © 2008 Trans Tech Publications, Switzerland. 2014-08-30T02:56:31Z 2014-08-30T02:56:31Z 2008 Conference Paper 9780878493562 10226680 75596 http://www.scopus.com/inward/record.url?eid=2-s2.0-62949155031&partnerID=40&md5=9f307e8e96a068c13fc28f8a6ba845af http://cmuir.cmu.ac.th/handle/6653943832/5431 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
Lead zirconate titanate (PZT)-Portland cement (PC) composites were produced and successfully poled at different poling field and time. The effect of polarization on the microstructure and piezoelectric properties were then investigated. It was found that, at a fixed poling field up to 2 kV/mm, the piezoelectric coefficient (d33) was found to increase with poling time. The optimum poling time was found at 45 minutes where d33 value is 42 pC/N. The optimum and most practical poling field found for the composite was at 2 kV/mm. Lower poling field would give the composite lower piezoelectricity and poling field that is too high would result to breakdown of samples. Therefore, from these results, a poling field of 2 kV/mm at 45 minutes would be the ideal polarization condition used in poling PZT-PC composites. © 2008 Trans Tech Publications, Switzerland. |
format |
Conference or Workshop Item |
author |
Chaipanich A. Jaitanong N. |
spellingShingle |
Chaipanich A. Jaitanong N. Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites |
author_facet |
Chaipanich A. Jaitanong N. |
author_sort |
Chaipanich A. |
title |
Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites |
title_short |
Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites |
title_full |
Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites |
title_fullStr |
Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites |
title_full_unstemmed |
Effect of polarization on the microstructure and piezoelectric properties of PZT-Cement composites |
title_sort |
effect of polarization on the microstructure and piezoelectric properties of pzt-cement composites |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-62949155031&partnerID=40&md5=9f307e8e96a068c13fc28f8a6ba845af http://cmuir.cmu.ac.th/handle/6653943832/5431 |
_version_ |
1681420424331657216 |