Realization of Interlinked ZnO Tetrapod Networks for UV Sensor and Room-Temperature Gas Sensor

© 2015 American Chemical Society. Here, interlinked ZnO tetrapod networks (ITN-ZnO) have been realized by using microwave-assisted thermal oxidation. With this simple and fast process, a nanostructured ZnO morphology having tetrapodlike features with leg-to-leg linking is obtained. The electrical an...

Full description

Saved in:
Bibliographic Details
Main Authors: Meechai Thepnurat, Torranin Chairuangsri, Niyom Hongsith, Pipat Ruankham, Supab Choopun
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84946780993&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54592
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2015 American Chemical Society. Here, interlinked ZnO tetrapod networks (ITN-ZnO) have been realized by using microwave-assisted thermal oxidation. With this simple and fast process, a nanostructured ZnO morphology having tetrapodlike features with leg-to-leg linking is obtained. The electrical and ethanol-sensing properties related to the morphology of ITN-ZnO compared with those of other ZnO morphologies have also been investigated. It has been found that ITN-ZnO unexpectedly exhibits superior electrical and gas-sensing properties in terms of providing pathways for electron transport to the electrode. A UV sensor and a room-temperature gas sensor with improved performance are achieved. Therefore, ITN-ZnO is an attractive morphology of ZnO that is applicable for many new applications because of its novel properties. The novel properties of ITN-ZnO are beneficial for electronic, photonic, optoelectronic, and sensing applications. ITN-ZnO may provide a means to improve the devices based on ITN-ZnO.