Metaheuristics for warehouse storage location assignment problems

© 2018 Inderscience Enterprises Ltd. This study addressed warehouse storage location assignment problems (SLAP) to minimize total travelling distances in an order-picking process. The problem was formulated and presented as a mixed integer programming model. The LINGO optimization solver was then us...

Full description

Saved in:
Bibliographic Details
Main Authors: Warisa Wisittipanich, Chompoonoot Kasemset
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047991018&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54911
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-54911
record_format dspace
spelling th-cmuir.6653943832-549112018-09-04T10:28:01Z Metaheuristics for warehouse storage location assignment problems Warisa Wisittipanich Chompoonoot Kasemset Multidisciplinary © 2018 Inderscience Enterprises Ltd. This study addressed warehouse storage location assignment problems (SLAP) to minimize total travelling distances in an order-picking process. The problem was formulated and presented as a mixed integer programming model. The LINGO optimization solver was then used to find solutions for a set of generated problems. The results showed that the LINGO optimization solver easily attained optimal solutions for small-sized problems; however, as the problem size increased, computational time increased rapidly. Eventually, when the problem size became very large, LINGO was unable to find solutions. Due to the competence limitations of the exact solution method, this research presented two effective metaheuristic approaches - Differential Evolution (DE) and Global Local and Near-Neighbor Particle Swarm Optimization (GLNPSO) - to solve SLAP. To illustrate the performance of the algorithms, the numerical results were evaluated and compared with a set of generated problems. The experimental results showed that, for small-sized problems, DE and GLNPSO found optimal solutions equal to those obtained from LINGO, with fast computing times. For medium-sized problems, DE and GLNPSO were not significantly different in terms of solution quality, but DE found solutions approximately twice as fast as GLNPSO. For large-sized problems, DE was significantly superior to GLNPSO in terms of both solution quality and computational times. The average DE solutions, obtained from five independent runs, were equal to or better than those obtained from GLNPSO in all large-sized instances. In addition, DE showed faster convergence behavior than GLNPSO, since it yielded better solutions while using a fewer number of function evaluations. 2018-09-04T10:28:01Z 2018-09-04T10:28:01Z 2015-01-01 Journal 16851994 2-s2.0-85047991018 10.12982/cmujns.2015.0093 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047991018&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/54911
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Multidisciplinary
spellingShingle Multidisciplinary
Warisa Wisittipanich
Chompoonoot Kasemset
Metaheuristics for warehouse storage location assignment problems
description © 2018 Inderscience Enterprises Ltd. This study addressed warehouse storage location assignment problems (SLAP) to minimize total travelling distances in an order-picking process. The problem was formulated and presented as a mixed integer programming model. The LINGO optimization solver was then used to find solutions for a set of generated problems. The results showed that the LINGO optimization solver easily attained optimal solutions for small-sized problems; however, as the problem size increased, computational time increased rapidly. Eventually, when the problem size became very large, LINGO was unable to find solutions. Due to the competence limitations of the exact solution method, this research presented two effective metaheuristic approaches - Differential Evolution (DE) and Global Local and Near-Neighbor Particle Swarm Optimization (GLNPSO) - to solve SLAP. To illustrate the performance of the algorithms, the numerical results were evaluated and compared with a set of generated problems. The experimental results showed that, for small-sized problems, DE and GLNPSO found optimal solutions equal to those obtained from LINGO, with fast computing times. For medium-sized problems, DE and GLNPSO were not significantly different in terms of solution quality, but DE found solutions approximately twice as fast as GLNPSO. For large-sized problems, DE was significantly superior to GLNPSO in terms of both solution quality and computational times. The average DE solutions, obtained from five independent runs, were equal to or better than those obtained from GLNPSO in all large-sized instances. In addition, DE showed faster convergence behavior than GLNPSO, since it yielded better solutions while using a fewer number of function evaluations.
format Journal
author Warisa Wisittipanich
Chompoonoot Kasemset
author_facet Warisa Wisittipanich
Chompoonoot Kasemset
author_sort Warisa Wisittipanich
title Metaheuristics for warehouse storage location assignment problems
title_short Metaheuristics for warehouse storage location assignment problems
title_full Metaheuristics for warehouse storage location assignment problems
title_fullStr Metaheuristics for warehouse storage location assignment problems
title_full_unstemmed Metaheuristics for warehouse storage location assignment problems
title_sort metaheuristics for warehouse storage location assignment problems
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85047991018&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54911
_version_ 1681424408220008448