An exact displacement based finite element model for axially loaded pile in elasto-plastic soil
© 2016, Int. J. of GEOMATE. A displacement based finite element method for analyzing axially loaded pile embedded in finite depth of elasto-plastic soil is presented. The investigation herein is conducted on the condition of shape function by which exact value may be reproduced at the nodal point re...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958225764&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55076 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-55076 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-550762018-09-05T03:02:51Z An exact displacement based finite element model for axially loaded pile in elasto-plastic soil C. Buachart C. Hansapinyo W. Sommanawat Agricultural and Biological Sciences Earth and Planetary Sciences Engineering Environmental Science © 2016, Int. J. of GEOMATE. A displacement based finite element method for analyzing axially loaded pile embedded in finite depth of elasto-plastic soil is presented. The investigation herein is conducted on the condition of shape function by which exact value may be reproduced at the nodal point regarding to a few number of element. The examined shape functions which satisfy the homogeneous governing equations in elastic and plastic soil are introduced to obtain the so-celled exact element stiffness matrix via total potential energy principle. Numerical examples of elasto-static pile, embedded in elasto-plastic Winkler foundation illustrates the accuracy of proposed element compare with conventional finite element shape functions. Axial force and displacement solutions show very good agreement with data from the available literature. Then the proposed shape functions are also used to conduct free vibration analysis of axially loaded pile embedded in elastic soil. The results from finite element modal analysis show fairly accurate compare with analytical solutions. 2018-09-05T02:51:32Z 2018-09-05T02:51:32Z 2016-01-01 Journal 21862982 2-s2.0-84958225764 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958225764&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55076 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Agricultural and Biological Sciences Earth and Planetary Sciences Engineering Environmental Science |
spellingShingle |
Agricultural and Biological Sciences Earth and Planetary Sciences Engineering Environmental Science C. Buachart C. Hansapinyo W. Sommanawat An exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
description |
© 2016, Int. J. of GEOMATE. A displacement based finite element method for analyzing axially loaded pile embedded in finite depth of elasto-plastic soil is presented. The investigation herein is conducted on the condition of shape function by which exact value may be reproduced at the nodal point regarding to a few number of element. The examined shape functions which satisfy the homogeneous governing equations in elastic and plastic soil are introduced to obtain the so-celled exact element stiffness matrix via total potential energy principle. Numerical examples of elasto-static pile, embedded in elasto-plastic Winkler foundation illustrates the accuracy of proposed element compare with conventional finite element shape functions. Axial force and displacement solutions show very good agreement with data from the available literature. Then the proposed shape functions are also used to conduct free vibration analysis of axially loaded pile embedded in elastic soil. The results from finite element modal analysis show fairly accurate compare with analytical solutions. |
format |
Journal |
author |
C. Buachart C. Hansapinyo W. Sommanawat |
author_facet |
C. Buachart C. Hansapinyo W. Sommanawat |
author_sort |
C. Buachart |
title |
An exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
title_short |
An exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
title_full |
An exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
title_fullStr |
An exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
title_full_unstemmed |
An exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
title_sort |
exact displacement based finite element model for axially loaded pile in elasto-plastic soil |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84958225764&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55076 |
_version_ |
1681424438611935232 |