Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis

Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cance...

Full description

Saved in:
Bibliographic Details
Main Authors: Ratana Banjerdpongchai, Patompong Khaw-On, Wialrt Pompimon
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84983350409&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55281
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-55281
record_format dspace
spelling th-cmuir.6653943832-552812018-09-05T03:10:59Z Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis Ratana Banjerdpongchai Patompong Khaw-On Wialrt Pompimon Biochemistry, Genetics and Molecular Biology Medicine Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cancer cell lines compared to normal murine fibroblast NIH3T3 cells. GTN exhibited the most potent cytotoxicity against MCF-7 > HeLa > HepG2 > NIH3T3 cells with IC50values of 7.33, 14.8, 37.1 and 65.4 μM, respectively, whereas PCN was cytotoxic only to HepG2 cells with IC50values of ~80 μM. Apoptotic cell death was confirmed by staining the cells with annexin V-FITC and propidium iodide (PI) employing flow cytometry. Apoptosis was shown by externalization of phosphatidylserine in goniothalamin-treated MCF-7 cells in a dose response manner. Positive PI-stained cells with the typical morphology of apoptotic cells were increased dose-dependently. Furthermore, reduction of mitochondrial transmembrane potential was found in goniothalamin-treated MCF-7, HepG2 and HeLa cells. GTN treatment in MCF-7 increased caspase-3, -8 and -9 activities while GTN-induced HeLa cells showed an increase of both caspase-3 and -9 activities. But an increased caspase-8 activity was demonstrated in GTN- and PCN-treated MCF-7 and HepG2 cells, respectively. Taken together, GTN- and PCN-induced human cancer cell apoptosis was through different molecular mechanisms or signaling pathways, which might be due to different machineries in different types of cancer cells, as evidenced by the compound-modulated caspase activities in both intrinsic and/or extrinsic pathways. 2018-09-05T02:53:57Z 2018-09-05T02:53:57Z 2016-01-01 Journal 15137368 2-s2.0-84983350409 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84983350409&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55281
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Biochemistry, Genetics and Molecular Biology
Medicine
spellingShingle Biochemistry, Genetics and Molecular Biology
Medicine
Ratana Banjerdpongchai
Patompong Khaw-On
Wialrt Pompimon
Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis
description Bioactive compounds extracted from leaves and twigs of Goniothalamus griffithii include pinocembrin (PCN) and goniothalamin (GTN). The objectives of this study were to investigate the cytotoxic activities of PCN and GTN and their influence on molecular signaling for cell death in several human cancer cell lines compared to normal murine fibroblast NIH3T3 cells. GTN exhibited the most potent cytotoxicity against MCF-7 > HeLa > HepG2 > NIH3T3 cells with IC50values of 7.33, 14.8, 37.1 and 65.4 μM, respectively, whereas PCN was cytotoxic only to HepG2 cells with IC50values of ~80 μM. Apoptotic cell death was confirmed by staining the cells with annexin V-FITC and propidium iodide (PI) employing flow cytometry. Apoptosis was shown by externalization of phosphatidylserine in goniothalamin-treated MCF-7 cells in a dose response manner. Positive PI-stained cells with the typical morphology of apoptotic cells were increased dose-dependently. Furthermore, reduction of mitochondrial transmembrane potential was found in goniothalamin-treated MCF-7, HepG2 and HeLa cells. GTN treatment in MCF-7 increased caspase-3, -8 and -9 activities while GTN-induced HeLa cells showed an increase of both caspase-3 and -9 activities. But an increased caspase-8 activity was demonstrated in GTN- and PCN-treated MCF-7 and HepG2 cells, respectively. Taken together, GTN- and PCN-induced human cancer cell apoptosis was through different molecular mechanisms or signaling pathways, which might be due to different machineries in different types of cancer cells, as evidenced by the compound-modulated caspase activities in both intrinsic and/or extrinsic pathways.
format Journal
author Ratana Banjerdpongchai
Patompong Khaw-On
Wialrt Pompimon
author_facet Ratana Banjerdpongchai
Patompong Khaw-On
Wialrt Pompimon
author_sort Ratana Banjerdpongchai
title Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis
title_short Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis
title_full Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis
title_fullStr Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis
title_full_unstemmed Phytochemicals from Goniothalamus griffithii induce human cancer cell apoptosis
title_sort phytochemicals from goniothalamus griffithii induce human cancer cell apoptosis
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84983350409&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55281
_version_ 1681424476684681216