Evidential clustering of large dissimilarity data

© 2016 Elsevier B.V. In evidential clustering, the membership of objects to clusters is considered to be uncertain and is represented by Dempster-Shafer mass functions, forming a credal partition. The EVCLUS algorithm constructs a credal partition in such a way that larger dissimilarities between ob...

Full description

Saved in:
Bibliographic Details
Main Authors: Thierry Denœux, Songsak Sriboonchitta, Orakanya Kanjanatarakul
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84973519329&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55323
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2016 Elsevier B.V. In evidential clustering, the membership of objects to clusters is considered to be uncertain and is represented by Dempster-Shafer mass functions, forming a credal partition. The EVCLUS algorithm constructs a credal partition in such a way that larger dissimilarities between objects correspond to higher degrees of conflict between the associated mass functions. In this paper, we present several improvements to EVCLUS, making it applicable to very large dissimilarity data. First, the gradient-based optimization procedure in the original EVCLUS algorithm is replaced by a much faster iterative row-wise quadratic programming method. Secondly, we show that EVCLUS can be provided with only a random sample of the dissimilarities, reducing the time and space complexity from quadratic to roughly linear. Finally, we introduce a two-step approach to construct credal partitions assigning masses to selected pairs of clusters, making the algorithm outputs more informative than those of the original EVCLUS, while remaining manageable for large numbers of clusters.