Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method
Copyright © 2016 American Scientific Publishers All rights reserved. This work investigated the phase formation and electrical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT) prepared by the nanocrystals-induced method. We prepared the nanocrystals or seeds by the molten salt method, using CaCO3and TiO...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994627557&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55365 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-55365 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-553652018-09-05T03:12:50Z Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method Piewpan Parjansri Manlika Kamnoy Sukum Eitssayeam Uraiwan Intatha Chemical Engineering Chemistry Engineering Materials Science Physics and Astronomy Copyright © 2016 American Scientific Publishers All rights reserved. This work investigated the phase formation and electrical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT) prepared by the nanocrystals-induced method. We prepared the nanocrystals or seeds by the molten salt method, using CaCO3and TiO2oxides as starting materials. The CaTiO3seeds showed a pure perovskite phase, and we obtained a particle size of ∼300 nm. After that, we mixed the CT seed with the starting powders of Ba0.85Ca0.15Zr0.1Ti0.9O3ceramic, prepared by the solid state reaction method. Results found that all ceramics showed a pure perovskite phase. The density values were in the range of 5.51 to 5.64 g/cm3, while relative density values were 96-99%. We measured the electrical properties (including dielectric, ferroelectric, and piezoelectric properties) as a function of CaTiO3seed content. We obtained the highest dielectric constant (εr∼ 4239) and lowest dielectric loss (tan δ ∼ 0.010) measured at room temperature from a sample with x = 0.08. Moreover, the BCZT doped with CaTiO3seed (x = 0.10) showed the highest values for the piezoelectric charge coefficient (d33) ∼ 477 pC/N, piezoelectric voltage coefficient (g33) ∼ 16 × 10-3Vm/N, and thickness mode electromechanical coupling (kt) ∼ 51.18%. Results suggested that CaTiO3-seeds enhanced the electrical properties of the BCZT ceramic using low calcination temperatures and with less dwelling time. 2018-09-05T02:54:51Z 2018-09-05T02:54:51Z 2016-12-01 Journal 15334899 15334880 2-s2.0-84994627557 10.1166/jnn.2016.13664 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994627557&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55365 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemical Engineering Chemistry Engineering Materials Science Physics and Astronomy |
spellingShingle |
Chemical Engineering Chemistry Engineering Materials Science Physics and Astronomy Piewpan Parjansri Manlika Kamnoy Sukum Eitssayeam Uraiwan Intatha Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method |
description |
Copyright © 2016 American Scientific Publishers All rights reserved. This work investigated the phase formation and electrical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT) prepared by the nanocrystals-induced method. We prepared the nanocrystals or seeds by the molten salt method, using CaCO3and TiO2oxides as starting materials. The CaTiO3seeds showed a pure perovskite phase, and we obtained a particle size of ∼300 nm. After that, we mixed the CT seed with the starting powders of Ba0.85Ca0.15Zr0.1Ti0.9O3ceramic, prepared by the solid state reaction method. Results found that all ceramics showed a pure perovskite phase. The density values were in the range of 5.51 to 5.64 g/cm3, while relative density values were 96-99%. We measured the electrical properties (including dielectric, ferroelectric, and piezoelectric properties) as a function of CaTiO3seed content. We obtained the highest dielectric constant (εr∼ 4239) and lowest dielectric loss (tan δ ∼ 0.010) measured at room temperature from a sample with x = 0.08. Moreover, the BCZT doped with CaTiO3seed (x = 0.10) showed the highest values for the piezoelectric charge coefficient (d33) ∼ 477 pC/N, piezoelectric voltage coefficient (g33) ∼ 16 × 10-3Vm/N, and thickness mode electromechanical coupling (kt) ∼ 51.18%. Results suggested that CaTiO3-seeds enhanced the electrical properties of the BCZT ceramic using low calcination temperatures and with less dwelling time. |
format |
Journal |
author |
Piewpan Parjansri Manlika Kamnoy Sukum Eitssayeam Uraiwan Intatha |
author_facet |
Piewpan Parjansri Manlika Kamnoy Sukum Eitssayeam Uraiwan Intatha |
author_sort |
Piewpan Parjansri |
title |
Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method |
title_short |
Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method |
title_full |
Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method |
title_fullStr |
Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method |
title_full_unstemmed |
Modifying the electrical properties of Ba<inf>0.85</inf>Ca<inf>0.15</inf>Zr<inf>0.1</inf>Ti<inf>0.9</inf>O<inf>3</inf>ceramics by the nanocrystals-induced method |
title_sort |
modifying the electrical properties of ba<inf>0.85</inf>ca<inf>0.15</inf>zr<inf>0.1</inf>ti<inf>0.9</inf>o<inf>3</inf>ceramics by the nanocrystals-induced method |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994627557&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55365 |
_version_ |
1681424492209897472 |