Antimicrobial activities of fungi derived from the gorgonian sea fan Annella sp. & their metabolites

© 2016, National Institute of Science Communication and Information Resources (NISCAIR). All rights reserved. One hundred and sixty-three fungi isolated from gorgonian sea fan Annella sp. were screened for antimicrobial activity against human pathogens. Forty-seven percents of the isolates produced...

Full description

Saved in:
Bibliographic Details
Main Authors: Sita Preedanon, Souwalak Phongpaichit, Jariya Sakayaroj, Vatcharin Rukachaisirikul, Nanthaphong Khamthong, Kongkiat Trisuwan, Sakanan Plathong
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006868239&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55636
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2016, National Institute of Science Communication and Information Resources (NISCAIR). All rights reserved. One hundred and sixty-three fungi isolated from gorgonian sea fan Annella sp. were screened for antimicrobial activity against human pathogens. Forty-seven percents of the isolates produced antimicrobial metabolites against at least one pathogen with minimum inhibitory concentrations (MIC) ranged from 1 to 1,280 µg mL-1. Crude extracts from 16%, 21%, 18% and 23% of the isolates inhibited standard strain of Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli and Pseudomonas aeruginosa, respectively. Eighteen percents of the isolates displayed antifungal activity against Microsporum gypseum while only 3% inhibited Cryptoccocus neoformans and Candida albicans. Potential isolates were identified by morphological and molecular characteristics. Twenty-nine pure compounds isolated from ten isolates were evaluated for antimicrobial activity. Griseofulvin from Nigrospora sp. PSU-F13 exhibited the best activity against M. gypseum (MIC 2 µg mL-1). The result indicates that sea fan-derived fungi are a potential source of antimicrobial agents.