Surface energy and wettability control in bio-inspired PEG like thin films

© 2015 Elsevier Ltd. Tailoring of chemical functionalities in polymer films can induce interesting biocompatibility, however the sequential process of polymerization followed by functionalization imposes surface-interface complexities and inhomogeneity of functional groups across the thickness. Here...

全面介紹

Saved in:
書目詳細資料
Main Authors: Amjed Javid, Manish Kumar, Long Wen, Seokyoung Yoon, Su B. Jin, Jung Heon Lee, Jeon Geon Han
格式: 雜誌
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84954513181&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55761
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:© 2015 Elsevier Ltd. Tailoring of chemical functionalities in polymer films can induce interesting biocompatibility, however the sequential process of polymerization followed by functionalization imposes surface-interface complexities and inhomogeneity of functional groups across the thickness. Here, a single-step plasma process, enabling the simultaneous polymerization-functionalization, is demonstrated to control the surface energy and wettability of polyethylene glycol-like thin films. Chemical studies, carried out by Fourier transform infra-red spectroscopy and X-ray photoelectron spectroscopy, confirm the evolution and enhancement in amide functionalities, owing to the increase in the electronic transitions related to nitrogen based ions/radicals (independently confirmed by optical emission spectroscopy). In present case, the evolution and control over amide functionalities lead to the enhancement in wettability and surface energy tailoring in 60.5-67.5mJ/m2range. Excellent growth of L-929 fibroblast cells is obtained by the synergic contribution of plasma power and N2flow rate via enriching the amide functionalities in these films.