A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size
© 2016 Elsevier B.V. All rights reserved. In this study, we have investigated the size effects of palladium (Pd) doped single-vacancy defective graphene (SDG) surface to the adsorption of AsH3and its dehydrogenated products on Pd using density functional theory calculations. Here, Pd cluster binding...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84960153876&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55922 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-55922 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-559222018-09-05T03:04:59Z A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size Manaschai Kunaseth Tanabat Mudchimo Supawadee Namuangruk Nawee Kungwan Vinich Promarak Siriporn Jungsuttiwong Materials Science © 2016 Elsevier B.V. All rights reserved. In this study, we have investigated the size effects of palladium (Pd) doped single-vacancy defective graphene (SDG) surface to the adsorption of AsH3and its dehydrogenated products on Pd using density functional theory calculations. Here, Pd cluster binding study revealed that Pd6nanocluster bound strongest to the SDG surface, while adsorption of AsHx(x = 0-3) on the most stable Pdndoped SDG showed that dehydrogenated arsine compounds adsorbed onto the surface stronger than the pristine AsH3molecule. Charge analysis revealed that considerable amount of charge migration from Pd to dehydrogenated arsine molecules after adsorption may constitute strong adsorption for dehydrogenated arsine. In addition, study of thermodynamic pathways of AsH3dehydrogenation on Pdndoped SDG adsorbents indicated that Pd cluster doping on SDG adsorbent tends to be thermodynamically favorable for AsH3decomposition than the single-Pd atom doped SDG. Hence, our study has indicated that Pd6clusters doped SDG is more advantageous as adsorbent material for AsH3removal. 2018-09-05T03:04:59Z 2018-09-05T03:04:59Z 2016-03-30 Journal 01694332 2-s2.0-84960153876 10.1016/j.apsusc.2016.01.139 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84960153876&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55922 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Materials Science |
spellingShingle |
Materials Science Manaschai Kunaseth Tanabat Mudchimo Supawadee Namuangruk Nawee Kungwan Vinich Promarak Siriporn Jungsuttiwong A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size |
description |
© 2016 Elsevier B.V. All rights reserved. In this study, we have investigated the size effects of palladium (Pd) doped single-vacancy defective graphene (SDG) surface to the adsorption of AsH3and its dehydrogenated products on Pd using density functional theory calculations. Here, Pd cluster binding study revealed that Pd6nanocluster bound strongest to the SDG surface, while adsorption of AsHx(x = 0-3) on the most stable Pdndoped SDG showed that dehydrogenated arsine compounds adsorbed onto the surface stronger than the pristine AsH3molecule. Charge analysis revealed that considerable amount of charge migration from Pd to dehydrogenated arsine molecules after adsorption may constitute strong adsorption for dehydrogenated arsine. In addition, study of thermodynamic pathways of AsH3dehydrogenation on Pdndoped SDG adsorbents indicated that Pd cluster doping on SDG adsorbent tends to be thermodynamically favorable for AsH3decomposition than the single-Pd atom doped SDG. Hence, our study has indicated that Pd6clusters doped SDG is more advantageous as adsorbent material for AsH3removal. |
format |
Journal |
author |
Manaschai Kunaseth Tanabat Mudchimo Supawadee Namuangruk Nawee Kungwan Vinich Promarak Siriporn Jungsuttiwong |
author_facet |
Manaschai Kunaseth Tanabat Mudchimo Supawadee Namuangruk Nawee Kungwan Vinich Promarak Siriporn Jungsuttiwong |
author_sort |
Manaschai Kunaseth |
title |
A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size |
title_short |
A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size |
title_full |
A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size |
title_fullStr |
A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size |
title_full_unstemmed |
A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size |
title_sort |
dft study of arsine adsorption on palladium doped graphene: effects of palladium cluster size |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84960153876&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55922 |
_version_ |
1681424595801866240 |