Mechanically-driven spreading of bacterial populations
© 2015 Elsevier B.V. The effect of mechanical interactions between cells in the spreading of bacterial populations was investigated in one-dimensional space. A continuum-mechanics approach, comprising cell migration, proliferation, and exclusion processes, was employed to elucidate the dynamics. The...
Saved in:
Main Authors: | , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84951848821&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55950 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Summary: | © 2015 Elsevier B.V. The effect of mechanical interactions between cells in the spreading of bacterial populations was investigated in one-dimensional space. A continuum-mechanics approach, comprising cell migration, proliferation, and exclusion processes, was employed to elucidate the dynamics. The consequent nonlinear reaction-diffusion-like equation describes the constitution dynamics of a bacterial population. In this model, bacterial cells were treated as rod-like particles that interact with each other through hard-core repulsion, which introduces the exclusion effect that causes bacterial populations to migrate quickly at high density. The propagation of bacterial density as a traveling wave front over extended times was also analyzed. The analytical and numerical solutions revealed that the front speed was enhanced by the exclusion process, which depended upon the cell-packing fraction. Finally, we qualitatively compared our theoretical results with experimental evidence. |
---|