Empirically successful transformations from non-gaussian to close-to-gaussian distributions: Theoretical justification
© 2016 by the Mathematical Association of Thailand. All rights reserved. A large number of efficient statistical methods have been designed for a frequent case when the distributions are normal (Gaussian). In practice, many probability distributions are not normal. In this case, Gaussian-based techn...
محفوظ في:
المؤلفون الرئيسيون: | Thongchai Dumrongpokaphan, Pedro Barragan, Vladik Kreinovich |
---|---|
التنسيق: | دورية |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008395342&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55977 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chiang Mai University |
مواد مشابهة
-
Empirically successful transformations from non-gaussian to close-to-gaussian distributions: Theoretical justification
بواسطة: Dumrongpokaphan T., وآخرون
منشور في: (2017) -
A bad plan is better than no plan: A theoretical justification of an empirical observation
بواسطة: Songsak Sriboonchitta, وآخرون
منشور في: (2018) -
A bad plan is better than no plan: A theoretical justification of an empirical observation
بواسطة: Songsak Sriboonchitta, وآخرون
منشور في: (2018) -
Do It Today or Do It Tomorrow: Empirical Non-exponential Discounting Explained by Symmetry Ideas
بواسطة: Francisco Zapata, وآخرون
منشور في: (2018) -
Maximum entropy as a feasible way to describe joint distribution in expert systems
بواسطة: Thongchai Dumrongpokaphan, وآخرون
منشور في: (2018)