3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity
© 2016 The Authors The data is obtained from exploring the modulatory activities of bioflavonoids on P-glycoprotein function by ligand-based approaches. Multivariate Linear-QSAR models for predicting the induced/inhibitory activities of the flavonoids were created. Molecular descriptors were initial...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020256412&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56349 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-56349 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-563492018-09-05T03:15:22Z 3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity Pathomwat Wongrattanakamon Vannajan Sanghiran Lee Piyarat Nimmanpipug Supat Jiranusornkul Multidisciplinary © 2016 The Authors The data is obtained from exploring the modulatory activities of bioflavonoids on P-glycoprotein function by ligand-based approaches. Multivariate Linear-QSAR models for predicting the induced/inhibitory activities of the flavonoids were created. Molecular descriptors were initially used as independent variables and a dependent variable was expressed as pFAR. The variables were then used in MLR analysis by stepwise regression calculation to build the linear QSAR data. The entire dataset consisted of 23 bioflavonoids was used as a training set. Regarding the obtained MLR QSAR model, R of 0.963, R2=0.927, Radj2=0.900, SEE=0.197, F=33.849 and q2=0.927 were achieved. The true predictabilities of QSAR model were justified by evaluation with the external dataset (Table 4). The pFARs of representative flavonoids were predicted by MLR QSAR modelling. The data showed that internal and external validations may generate the same conclusion. 2018-09-05T03:15:22Z 2018-09-05T03:15:22Z 2016-12-01 Journal 23523409 2-s2.0-85020256412 10.1016/j.dib.2016.08.004 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020256412&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56349 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Multidisciplinary |
spellingShingle |
Multidisciplinary Pathomwat Wongrattanakamon Vannajan Sanghiran Lee Piyarat Nimmanpipug Supat Jiranusornkul 3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity |
description |
© 2016 The Authors The data is obtained from exploring the modulatory activities of bioflavonoids on P-glycoprotein function by ligand-based approaches. Multivariate Linear-QSAR models for predicting the induced/inhibitory activities of the flavonoids were created. Molecular descriptors were initially used as independent variables and a dependent variable was expressed as pFAR. The variables were then used in MLR analysis by stepwise regression calculation to build the linear QSAR data. The entire dataset consisted of 23 bioflavonoids was used as a training set. Regarding the obtained MLR QSAR model, R of 0.963, R2=0.927, Radj2=0.900, SEE=0.197, F=33.849 and q2=0.927 were achieved. The true predictabilities of QSAR model were justified by evaluation with the external dataset (Table 4). The pFARs of representative flavonoids were predicted by MLR QSAR modelling. The data showed that internal and external validations may generate the same conclusion. |
format |
Journal |
author |
Pathomwat Wongrattanakamon Vannajan Sanghiran Lee Piyarat Nimmanpipug Supat Jiranusornkul |
author_facet |
Pathomwat Wongrattanakamon Vannajan Sanghiran Lee Piyarat Nimmanpipug Supat Jiranusornkul |
author_sort |
Pathomwat Wongrattanakamon |
title |
3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity |
title_short |
3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity |
title_full |
3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity |
title_fullStr |
3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity |
title_full_unstemmed |
3D-QSAR modelling dataset of bioflavonoids for predicting the potential modulatory effect on P-glycoprotein activity |
title_sort |
3d-qsar modelling dataset of bioflavonoids for predicting the potential modulatory effect on p-glycoprotein activity |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020256412&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56349 |
_version_ |
1681424675421290496 |