Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat
© 2017 Informa UK Limited, trading as Taylor & Francis Group. Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize c...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009289202&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56685 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-56685 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-566852018-09-05T03:41:16Z Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat David Secco Nadia Bouain Aida Rouached Chanakan Prom-u-thai Moez Hanin Ajay K. Pandey Hatem Rouached Biochemistry, Genetics and Molecular Biology Immunology and Microbiology © 2017 Informa UK Limited, trading as Taylor & Francis Group. Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today’s agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial. 2018-09-05T03:28:55Z 2018-09-05T03:28:55Z 2017-10-03 Journal 15497801 07388551 2-s2.0-85009289202 10.1080/07388551.2016.1268089 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009289202&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56685 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Biochemistry, Genetics and Molecular Biology Immunology and Microbiology |
spellingShingle |
Biochemistry, Genetics and Molecular Biology Immunology and Microbiology David Secco Nadia Bouain Aida Rouached Chanakan Prom-u-thai Moez Hanin Ajay K. Pandey Hatem Rouached Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat |
description |
© 2017 Informa UK Limited, trading as Taylor & Francis Group. Phosphorus (P) is an essential macronutrient for all living organisms. In plants, P is taken up from the rhizosphere by the roots mainly as inorganic phosphate (Pi), which is required in large and sufficient quantities to maximize crop yields. In today’s agricultural society, crop yield is mostly ensured by the excessive use of Pi fertilizers, a costly practice neither eco-friendly or sustainable. Therefore, generating plants with improved P use efficiency (PUE) is of major interest. Among the various strategies employed to date, attempts to engineer genetically modified crops with improved capacity to utilize phytate (PA), the largest soil P form and unfortunately not taken up by plants, remains a key challenge. To meet these challenges, we need a better understanding of the mechanisms regulating Pi sensing, signaling, transport and storage in plants. In this review, we summarize the current knowledge on these aspects, which are mainly gained from investigations conducted in Arabidopsis thaliana, and we extended it to those available on an economically important crop, wheat. Strategies to enhance the PA use, through the use of bacterial or fungal phytases and other attempts of reducing seed PA levels, are also discussed. We critically review these data in terms of their potential for use as a technology for genetic manipulation of PUE in wheat, which would be both economically and environmentally beneficial. |
format |
Journal |
author |
David Secco Nadia Bouain Aida Rouached Chanakan Prom-u-thai Moez Hanin Ajay K. Pandey Hatem Rouached |
author_facet |
David Secco Nadia Bouain Aida Rouached Chanakan Prom-u-thai Moez Hanin Ajay K. Pandey Hatem Rouached |
author_sort |
David Secco |
title |
Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat |
title_short |
Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat |
title_full |
Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat |
title_fullStr |
Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat |
title_full_unstemmed |
Phosphate, phytate and phytases in plants: from fundamental knowledge gained in Arabidopsis to potential biotechnological applications in wheat |
title_sort |
phosphate, phytate and phytases in plants: from fundamental knowledge gained in arabidopsis to potential biotechnological applications in wheat |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85009289202&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56685 |
_version_ |
1681424738234138624 |