Phonon and phonon-related properties of MgSiN<inf>2</inf>and MgGeN<inf>2</inf>ceramics: First principles studies

© 2017 Elsevier Ltd and Techna Group S.r.l. In this work, we used density functional perturbation theory to calculate phonon frequencies, phonon dispersions, Born effective charges, infrared (IR) absorption, and Raman spectra of MgSiN2and MgGeN2. From the results, the values of phonon frequencies ha...

Full description

Saved in:
Bibliographic Details
Main Authors: Sittichain Pramchu, Atchara Punya Jaroenjittichai, Yongyut Laosiritaworn
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85019728607&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/56903
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2017 Elsevier Ltd and Techna Group S.r.l. In this work, we used density functional perturbation theory to calculate phonon frequencies, phonon dispersions, Born effective charges, infrared (IR) absorption, and Raman spectra of MgSiN2and MgGeN2. From the results, the values of phonon frequencies have the scale comparable with the values reported in the previous theoretical work. Longitudinal optical (LO) and transverse optical (TO) splitting was also included in this work. Some small alteration of phonon frequencies were then found, which is caused by LO-TO splitting at zone-center. In addition, Born effective charge calculation reveals that MgSiN2and MgGeN2have the same ionic nature compared with the previously reported ZnSiN2and ZnGeN2semiconductor. The phonon frequencies that are IR and Raman active were firstly predicted. This clarification on phonon and phonon-related properties as well as related consequences are expected to help revealing more knowledge about the nature of MgSiN2and MgGeN2in enhancing/developing the opto-electronics devices.