Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC
© 2017 Elsevier B.V. The catalytic behavior of the novel tin(II) n-butyl L-lactate (Sn(OCH(CH3)COOnC4H9)2) initiator in the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) was firstly investigated by non-isothermal DSC. The Sn(OCH(CH3)COOnC4H9)2initiator was successfully synthesized from...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026912840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56965 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-56965 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-569652018-09-05T03:52:57Z Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC Winita Punyodom Wanich Limwanich Puttinan Meepowpan Chemistry Physics and Astronomy © 2017 Elsevier B.V. The catalytic behavior of the novel tin(II) n-butyl L-lactate (Sn(OCH(CH3)COOnC4H9)2) initiator in the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) was firstly investigated by non-isothermal DSC. The Sn(OCH(CH3)COOnC4H9)2initiator was successfully synthesized from the reaction of tin(II) chloride (SnCl2), diethylamine (Et2NH) and n-butyl L-lactate (CH3CH(OH)COOnC4H9). The synthesized Sn(OCH(CH3)COOnC4H9)2was characterized by FT-IR,1H NMR and13C NMR techniques. The advantages of this initiator were high oxygen-moisture stability and solubility in common organic solvent. From DSC analysis, the polymerization rate of ε-CL was controlled by Sn(OCH(CH3)COOnC4H9)2concentration. The average values of activation energy (Ea) obtained from Starink isoconversional method for the ROP of ε-CL initiated by 1.0, 2.0 and 3.0 mol% of Sn(OCH(CH3)COOnC4H9)2were 74 ± 5, 72 ± 5 and 68 ± 2 kJ/mol, respectively. Furthermore, the aggregation and non-aggregation equilibrium of Sn(OCH(CH3)COOnC4H9)2initiator in the ROP of ε-CL was also investigated by non-isothermal DSC. The degree of aggregation (m) of initiator was rapidly determined using new derived equation based on non-isothermal DSC approach. The polymerization mechanism was also studied and proposed through the coordination-insertion mechanism. 2018-09-05T03:32:43Z 2018-09-05T03:32:43Z 2017-09-10 Journal 00406031 2-s2.0-85026912840 10.1016/j.tca.2017.06.025 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026912840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56965 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Chemistry Physics and Astronomy |
spellingShingle |
Chemistry Physics and Astronomy Winita Punyodom Wanich Limwanich Puttinan Meepowpan Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC |
description |
© 2017 Elsevier B.V. The catalytic behavior of the novel tin(II) n-butyl L-lactate (Sn(OCH(CH3)COOnC4H9)2) initiator in the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) was firstly investigated by non-isothermal DSC. The Sn(OCH(CH3)COOnC4H9)2initiator was successfully synthesized from the reaction of tin(II) chloride (SnCl2), diethylamine (Et2NH) and n-butyl L-lactate (CH3CH(OH)COOnC4H9). The synthesized Sn(OCH(CH3)COOnC4H9)2was characterized by FT-IR,1H NMR and13C NMR techniques. The advantages of this initiator were high oxygen-moisture stability and solubility in common organic solvent. From DSC analysis, the polymerization rate of ε-CL was controlled by Sn(OCH(CH3)COOnC4H9)2concentration. The average values of activation energy (Ea) obtained from Starink isoconversional method for the ROP of ε-CL initiated by 1.0, 2.0 and 3.0 mol% of Sn(OCH(CH3)COOnC4H9)2were 74 ± 5, 72 ± 5 and 68 ± 2 kJ/mol, respectively. Furthermore, the aggregation and non-aggregation equilibrium of Sn(OCH(CH3)COOnC4H9)2initiator in the ROP of ε-CL was also investigated by non-isothermal DSC. The degree of aggregation (m) of initiator was rapidly determined using new derived equation based on non-isothermal DSC approach. The polymerization mechanism was also studied and proposed through the coordination-insertion mechanism. |
format |
Journal |
author |
Winita Punyodom Wanich Limwanich Puttinan Meepowpan |
author_facet |
Winita Punyodom Wanich Limwanich Puttinan Meepowpan |
author_sort |
Winita Punyodom |
title |
Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC |
title_short |
Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC |
title_full |
Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC |
title_fullStr |
Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC |
title_full_unstemmed |
Tin(II) n-butyl L-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC |
title_sort |
tin(ii) n-butyl l-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: kinetics and aggregation equilibrium analysis by non-isothermal dsc |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85026912840&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56965 |
_version_ |
1681424790627287040 |