Ellipsoidal support vector data description
© 2016, The Natural Computing Applications Forum. This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but inste...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976607976&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57026 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-57026 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-570262018-09-05T03:34:07Z Ellipsoidal support vector data description Kasemsit Teeyapan Nipon Theera-Umpon Sansanee Auephanwiriyakul Computer Science © 2016, The Natural Computing Applications Forum. This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but instead, with an ellipsoidal domain description allowing tighter space around the data. In eSVDD, a hyperellipsoid extends its ability to describe more complex data patterns by kernel methods. This is explicitly achieved by defining an “empirical feature map” to project the images of given samples to a higher-dimensional space. We compare the performance of the kernelized ellipsoid in one-class classification with SVDD using standard datasets. 2018-09-05T03:34:07Z 2018-09-05T03:34:07Z 2017-12-01 Journal 09410643 2-s2.0-84976607976 10.1007/s00521-016-2343-3 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976607976&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57026 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Computer Science |
spellingShingle |
Computer Science Kasemsit Teeyapan Nipon Theera-Umpon Sansanee Auephanwiriyakul Ellipsoidal support vector data description |
description |
© 2016, The Natural Computing Applications Forum. This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but instead, with an ellipsoidal domain description allowing tighter space around the data. In eSVDD, a hyperellipsoid extends its ability to describe more complex data patterns by kernel methods. This is explicitly achieved by defining an “empirical feature map” to project the images of given samples to a higher-dimensional space. We compare the performance of the kernelized ellipsoid in one-class classification with SVDD using standard datasets. |
format |
Journal |
author |
Kasemsit Teeyapan Nipon Theera-Umpon Sansanee Auephanwiriyakul |
author_facet |
Kasemsit Teeyapan Nipon Theera-Umpon Sansanee Auephanwiriyakul |
author_sort |
Kasemsit Teeyapan |
title |
Ellipsoidal support vector data description |
title_short |
Ellipsoidal support vector data description |
title_full |
Ellipsoidal support vector data description |
title_fullStr |
Ellipsoidal support vector data description |
title_full_unstemmed |
Ellipsoidal support vector data description |
title_sort |
ellipsoidal support vector data description |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84976607976&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57026 |
_version_ |
1681424801986510848 |