Strong convergence of generalized projection algorithms for nonlinear operators

We establish strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of two relatively nonexpansive mappings in a Banach space by using a new hybrid method. Moreover we apply our main results to obtain strong convergence f...

Full description

Saved in:
Bibliographic Details
Main Authors: Takahashi W., Klin-Eam C., Suantai S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-71049120177&partnerID=40&md5=771096b7a020ff810231f77c61ca5e83
http://cmuir.cmu.ac.th/handle/6653943832/5706
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-5706
record_format dspace
spelling th-cmuir.6653943832-57062014-08-30T03:23:21Z Strong convergence of generalized projection algorithms for nonlinear operators Takahashi W. Klin-Eam C. Suantai S. We establish strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of two relatively nonexpansive mappings in a Banach space by using a new hybrid method. Moreover we apply our main results to obtain strong convergence for a maximal monotone operator and two nonexpansive mappings in a Hilbert space. Copyright © 2009 Chakkrid Klin-eam et al. 2014-08-30T03:23:21Z 2014-08-30T03:23:21Z 2009 Article 10853375 10.1155/2009/649831 http://www.scopus.com/inward/record.url?eid=2-s2.0-71049120177&partnerID=40&md5=771096b7a020ff810231f77c61ca5e83 http://cmuir.cmu.ac.th/handle/6653943832/5706 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description We establish strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of two relatively nonexpansive mappings in a Banach space by using a new hybrid method. Moreover we apply our main results to obtain strong convergence for a maximal monotone operator and two nonexpansive mappings in a Hilbert space. Copyright © 2009 Chakkrid Klin-eam et al.
format Article
author Takahashi W.
Klin-Eam C.
Suantai S.
spellingShingle Takahashi W.
Klin-Eam C.
Suantai S.
Strong convergence of generalized projection algorithms for nonlinear operators
author_facet Takahashi W.
Klin-Eam C.
Suantai S.
author_sort Takahashi W.
title Strong convergence of generalized projection algorithms for nonlinear operators
title_short Strong convergence of generalized projection algorithms for nonlinear operators
title_full Strong convergence of generalized projection algorithms for nonlinear operators
title_fullStr Strong convergence of generalized projection algorithms for nonlinear operators
title_full_unstemmed Strong convergence of generalized projection algorithms for nonlinear operators
title_sort strong convergence of generalized projection algorithms for nonlinear operators
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-71049120177&partnerID=40&md5=771096b7a020ff810231f77c61ca5e83
http://cmuir.cmu.ac.th/handle/6653943832/5706
_version_ 1681420476199469056