Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence
© 2017 Elsevier B.V. Ovarian cancer is the second leading cause of deaths among gynecologic cancers in the world. Approximately 90% of women with ovarian cancer reported having symptoms long before a diagnosis was made. Literature shows that recurrence should be predicted with regard to their person...
محفوظ في:
المؤلفون الرئيسيون: | Chih Jen Tseng, Chi Jie Lu, Chi Chang Chang, Gin Den Chen, Chalong Cheewakriangkrai |
---|---|
التنسيق: | دورية |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85020746721&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57084 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Chiang Mai University |
مواد مشابهة
-
Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence
بواسطة: Chih Jen Tseng, وآخرون
منشور في: (2018) -
Integration of data mining classification techniques and ensemble learning to identify risk factors and diagnose ovarian cancer recurrence
بواسطة: Tseng C., وآخرون
منشور في: (2017) -
Recurrence impact of primary site and pathologic stage in patients diagnosed with colorectal cancer
بواسطة: Wen Chien Ting, وآخرون
منشور في: (2018) -
Ensemble of deep recurrent neural networks for identifying enhancers via dinucleotide physicochemical properties
بواسطة: Tan, Kok Keng, وآخرون
منشور في: (2020) -
Computational intelligence technologies meet medical informatics -From prediction to prognosis
بواسطة: Chi Chang Chang, وآخرون
منشور في: (2018)