Enhancement of temporal resolution using improved time-variant spectral whitening

© 2017 Sinopec Geophysical Research Institute. Time-variant spectral whitening was introduced as a powerful method to enhance temporal resolution. Despite all the benefits the method carries, some negative points include balancing all kinds of amplitudes and affecting high reflections that show the...

Full description

Saved in:
Bibliographic Details
Main Authors: Diako Hariri Naghadeh, Christopher Keith Morley
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85021669065&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57208
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-57208
record_format dspace
spelling th-cmuir.6653943832-572082018-09-05T03:40:20Z Enhancement of temporal resolution using improved time-variant spectral whitening Diako Hariri Naghadeh Christopher Keith Morley Earth and Planetary Sciences Engineering Environmental Science © 2017 Sinopec Geophysical Research Institute. Time-variant spectral whitening was introduced as a powerful method to enhance temporal resolution. Despite all the benefits the method carries, some negative points include balancing all kinds of amplitudes and affecting high reflections that show the effect of fluids or lithology changing and creating a Gibbs phenomenon when the objective is to enhance resolution. Synthetic and real data sets were used to highlight those weaknesses and some new steps were added to the methodology to improve and overcome the problems. The improved technique can whiten the spectrum more without sacrificing or touching high reflection amplitudes. To apply this method large Gaussian windows were shifted. These windows had frequency bandwidths equal to 70 Hz. An overlap of 90% between subsequent windows was chosen to extract the frequency components. The gain function for each component was measured from the inverse of an area-based envelope. Summation of the product of each frequency component with its own gain function achieves an enhanced trace. Comparison of the rms amplitude attributes computed from the general method and from our improved method shows that the general time-variant spectral whitening decreases the levels of high amplitudes and boosts low amplitudes considerably, which makes differentiation between amplitudes impossible. 2018-09-05T03:36:29Z 2018-09-05T03:36:29Z 2017-06-13 Journal 17422140 17422132 2-s2.0-85021669065 10.1088/1742-2140/aa6ddf https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85021669065&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57208
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Earth and Planetary Sciences
Engineering
Environmental Science
spellingShingle Earth and Planetary Sciences
Engineering
Environmental Science
Diako Hariri Naghadeh
Christopher Keith Morley
Enhancement of temporal resolution using improved time-variant spectral whitening
description © 2017 Sinopec Geophysical Research Institute. Time-variant spectral whitening was introduced as a powerful method to enhance temporal resolution. Despite all the benefits the method carries, some negative points include balancing all kinds of amplitudes and affecting high reflections that show the effect of fluids or lithology changing and creating a Gibbs phenomenon when the objective is to enhance resolution. Synthetic and real data sets were used to highlight those weaknesses and some new steps were added to the methodology to improve and overcome the problems. The improved technique can whiten the spectrum more without sacrificing or touching high reflection amplitudes. To apply this method large Gaussian windows were shifted. These windows had frequency bandwidths equal to 70 Hz. An overlap of 90% between subsequent windows was chosen to extract the frequency components. The gain function for each component was measured from the inverse of an area-based envelope. Summation of the product of each frequency component with its own gain function achieves an enhanced trace. Comparison of the rms amplitude attributes computed from the general method and from our improved method shows that the general time-variant spectral whitening decreases the levels of high amplitudes and boosts low amplitudes considerably, which makes differentiation between amplitudes impossible.
format Journal
author Diako Hariri Naghadeh
Christopher Keith Morley
author_facet Diako Hariri Naghadeh
Christopher Keith Morley
author_sort Diako Hariri Naghadeh
title Enhancement of temporal resolution using improved time-variant spectral whitening
title_short Enhancement of temporal resolution using improved time-variant spectral whitening
title_full Enhancement of temporal resolution using improved time-variant spectral whitening
title_fullStr Enhancement of temporal resolution using improved time-variant spectral whitening
title_full_unstemmed Enhancement of temporal resolution using improved time-variant spectral whitening
title_sort enhancement of temporal resolution using improved time-variant spectral whitening
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85021669065&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57208
_version_ 1681424835974004736