Maximal buttonings of non-tree graphs

© 2017 by the Mathematical Association of Thailand. All rights reserved. Let G be a finite connected graph of n vertices v1, v2,…, vn. A buttoning of G is a closed walk consisting of n shortest paths [v1, v2], [v2, v3],…, [vn−1, vn], [vn, v1]. The buttoning is said to be maximal if it has a maximum...

Full description

Saved in:
Bibliographic Details
Main Authors: Wanchai Tapanyo, Pradthana Jaipong
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041961413&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57500
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2017 by the Mathematical Association of Thailand. All rights reserved. Let G be a finite connected graph of n vertices v1, v2,…, vn. A buttoning of G is a closed walk consisting of n shortest paths [v1, v2], [v2, v3],…, [vn−1, vn], [vn, v1]. The buttoning is said to be maximal if it has a maximum length when compared with all other buttonings of G. The goal of this work is to find a length of a maximal buttoning of non-tree graphs: complete multipartite graphs, grid graphs and rooted products of graphs.