On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>

© 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis ex...

Full description

Saved in:
Bibliographic Details
Main Authors: Hai Q. Dinh, Sompong Dhompongsa, Songsak Sriboonchitta
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-57520
record_format dspace
spelling th-cmuir.6653943832-575202018-09-05T03:45:00Z On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> Hai Q. Dinh Sompong Dhompongsa Songsak Sriboonchitta Mathematics © 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2ps. In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree <4 over Fpmis invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of Fpm, it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x4−α0〉, and so the (α+uβ)-constacyclic codes are 〈(x4−α0)i〉, for 0≤i≤2ps. For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of Fpm, it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x4−γ0,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided. 2018-09-05T03:45:00Z 2018-09-05T03:45:00Z 2017-04-01 Journal 0012365X 2-s2.0-85008177631 10.1016/j.disc.2016.11.014 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Hai Q. Dinh
Sompong Dhompongsa
Songsak Sriboonchitta
On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
description © 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2ps. In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree <4 over Fpmis invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of Fpm, it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x4−α0〉, and so the (α+uβ)-constacyclic codes are 〈(x4−α0)i〉, for 0≤i≤2ps. For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of Fpm, it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x4−γ0,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided.
format Journal
author Hai Q. Dinh
Sompong Dhompongsa
Songsak Sriboonchitta
author_facet Hai Q. Dinh
Sompong Dhompongsa
Songsak Sriboonchitta
author_sort Hai Q. Dinh
title On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_short On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_full On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_fullStr On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_full_unstemmed On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
title_sort on constacyclic codes of length 4p<sup>s</sup>over f<inf>p<sup>m</sup></inf>+uf<inf>p<sup>m</sup></inf>
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520
_version_ 1681424894057775104