On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf>
© 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis ex...
Saved in:
Main Authors: | , , |
---|---|
Format: | Journal |
Published: |
2018
|
Subjects: | |
Online Access: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
id |
th-cmuir.6653943832-57520 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-575202018-09-05T03:45:00Z On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> Hai Q. Dinh Sompong Dhompongsa Songsak Sriboonchitta Mathematics © 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2ps. In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree <4 over Fpmis invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of Fpm, it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x4−α0〉, and so the (α+uβ)-constacyclic codes are 〈(x4−α0)i〉, for 0≤i≤2ps. For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of Fpm, it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x4−γ0,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided. 2018-09-05T03:45:00Z 2018-09-05T03:45:00Z 2017-04-01 Journal 0012365X 2-s2.0-85008177631 10.1016/j.disc.2016.11.014 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520 |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
topic |
Mathematics |
spellingShingle |
Mathematics Hai Q. Dinh Sompong Dhompongsa Songsak Sriboonchitta On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> |
description |
© 2016 Elsevier B.V. For any odd prime p such that pm≡1(mod4), the structures of all λ-constacyclic codes of length 4psover the finite commutative chain ring Fpm+uFpm(u2=0) are established in terms of their generator polynomials. If the unit λ is a square, each λ-constacyclic code of length 4psis expressed as a direct sum of an −α-constacyclic code and an α-constacyclic code of length 2ps. In the main case that the unit λ is not a square, it is shown that any nonzero polynomial of degree <4 over Fpmis invertible in the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− λ〉. When the unit λ is of the form λ=α+uβ for nonzero elements α,β of Fpm, it is obtained that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s−( α+ u β)〉 is a chain ring with maximal ideal 〈x4−α0〉, and so the (α+uβ)-constacyclic codes are 〈(x4−α0)i〉, for 0≤i≤2ps. For the remaining case, that the unit λ is not a square, and λ=γ for a nonzero element γ of Fpm, it is proven that the ambient ring (F p m + uF p m )[ x]〈 x 4 p s− γ〉 is a local ring with the unique maximal ideal 〈x4−γ0,u〉. Such λ-constacyclic codes are then classified into 4 distinct types of ideals, and the detailed structures of ideals in each type are provided. Among other results, the number of codewords, and the dual of each λ-constacyclic code are provided. |
format |
Journal |
author |
Hai Q. Dinh Sompong Dhompongsa Songsak Sriboonchitta |
author_facet |
Hai Q. Dinh Sompong Dhompongsa Songsak Sriboonchitta |
author_sort |
Hai Q. Dinh |
title |
On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> |
title_short |
On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> |
title_full |
On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> |
title_fullStr |
On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> |
title_full_unstemmed |
On constacyclic codes of length 4p<sup>s</sup>over F<inf>p<sup>m</sup></inf>+uF<inf>p<sup>m</sup></inf> |
title_sort |
on constacyclic codes of length 4p<sup>s</sup>over f<inf>p<sup>m</sup></inf>+uf<inf>p<sup>m</sup></inf> |
publishDate |
2018 |
url |
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85008177631&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57520 |
_version_ |
1681424894057775104 |