Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>

© 2017 by the Mathematical Association of Thailand. All rights reserved. In this paper, we describe a method of finding the upper bound for the crossing Number of Qn×K3. We construct a drawing of Qn× K3, called a 3−axes drawing of Qn×K3. A 3 −axes drawing of Qn×K3is a representation of Qn× K3on the...

Full description

Saved in:
Bibliographic Details
Main Authors: Aroonwan Suebsriwichai, Thanasak Mouktonglang
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028777676&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57531
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
id th-cmuir.6653943832-57531
record_format dspace
spelling th-cmuir.6653943832-575312018-09-05T03:45:13Z Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf> Aroonwan Suebsriwichai Thanasak Mouktonglang Mathematics © 2017 by the Mathematical Association of Thailand. All rights reserved. In this paper, we describe a method of finding the upper bound for the crossing Number of Qn×K3. We construct a drawing of Qn× K3, called a 3−axes drawing of Qn×K3. A 3 −axes drawing of Qn×K3is a representation of Qn× K3on the plane such that its vertices are placed on 3 straight lines Liwhere i = 1, 2, 3 with a fixed vertex ordering. 2018-09-05T03:45:13Z 2018-09-05T03:45:13Z 2017-01-01 Journal 16860209 2-s2.0-85028777676 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028777676&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57531
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Aroonwan Suebsriwichai
Thanasak Mouktonglang
Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>
description © 2017 by the Mathematical Association of Thailand. All rights reserved. In this paper, we describe a method of finding the upper bound for the crossing Number of Qn×K3. We construct a drawing of Qn× K3, called a 3−axes drawing of Qn×K3. A 3 −axes drawing of Qn×K3is a representation of Qn× K3on the plane such that its vertices are placed on 3 straight lines Liwhere i = 1, 2, 3 with a fixed vertex ordering.
format Journal
author Aroonwan Suebsriwichai
Thanasak Mouktonglang
author_facet Aroonwan Suebsriwichai
Thanasak Mouktonglang
author_sort Aroonwan Suebsriwichai
title Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>
title_short Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>
title_full Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>
title_fullStr Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>
title_full_unstemmed Upper bound for the crossing number of Q<inf>n</inf>×K<inf>3</inf>
title_sort upper bound for the crossing number of q<inf>n</inf>×k<inf>3</inf>
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85028777676&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57531
_version_ 1681424896105644032