Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence resul...

Full description

Saved in:
Bibliographic Details
Main Authors: Klin-eam C., Suantai S.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-70449701669&partnerID=40&md5=c3bb0725d0d49593808715c483866bda
http://cmuir.cmu.ac.th/handle/6653943832/5770
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-5770
record_format dspace
spelling th-cmuir.6653943832-57702014-08-30T03:23:27Z Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings Klin-eam C. Suantai S. We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. 2014-08-30T03:23:27Z 2014-08-30T03:23:27Z 2009 Article 16871820 10.1155/2009/261932 http://www.scopus.com/inward/record.url?eid=2-s2.0-70449701669&partnerID=40&md5=c3bb0725d0d49593808715c483866bda http://cmuir.cmu.ac.th/handle/6653943832/5770 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai.
format Article
author Klin-eam C.
Suantai S.
spellingShingle Klin-eam C.
Suantai S.
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
author_facet Klin-eam C.
Suantai S.
author_sort Klin-eam C.
title Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_short Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_full Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_fullStr Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_full_unstemmed Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
title_sort strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-70449701669&partnerID=40&md5=c3bb0725d0d49593808715c483866bda
http://cmuir.cmu.ac.th/handle/6653943832/5770
_version_ 1681420488336736256