Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence resul...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-70449701669&partnerID=40&md5=c3bb0725d0d49593808715c483866bda http://cmuir.cmu.ac.th/handle/6653943832/5770 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-5770 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-57702014-08-30T03:23:27Z Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings Klin-eam C. Suantai S. We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. 2014-08-30T03:23:27Z 2014-08-30T03:23:27Z 2009 Article 16871820 10.1155/2009/261932 http://www.scopus.com/inward/record.url?eid=2-s2.0-70449701669&partnerID=40&md5=c3bb0725d0d49593808715c483866bda http://cmuir.cmu.ac.th/handle/6653943832/5770 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Banach space. Copyright © 2009 C. Klin-eam and S. Suantai. |
format |
Article |
author |
Klin-eam C. Suantai S. |
spellingShingle |
Klin-eam C. Suantai S. Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
author_facet |
Klin-eam C. Suantai S. |
author_sort |
Klin-eam C. |
title |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_short |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_full |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_fullStr |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_full_unstemmed |
Strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
title_sort |
strong convergence of monotone hybrid method for maximal monotone operators and hemirelatively nonexpansive mappings |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-70449701669&partnerID=40&md5=c3bb0725d0d49593808715c483866bda http://cmuir.cmu.ac.th/handle/6653943832/5770 |
_version_ |
1681420488336736256 |