Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to les...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
2014
|
Online Access: | http://www.scopus.com/inward/record.url?eid=2-s2.0-69249229598&partnerID=40&md5=8336c43a11f960f90eb68822873440bd http://cmuir.cmu.ac.th/handle/6653943832/5795 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Chiang Mai University |
Language: | English |
id |
th-cmuir.6653943832-5795 |
---|---|
record_format |
dspace |
spelling |
th-cmuir.6653943832-57952014-08-30T03:23:29Z Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans Jampeetong A. Brix H. The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to less than 0.2 d-1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g-1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. © 2009 Elsevier B.V. All rights reserved. 2014-08-30T03:23:29Z 2014-08-30T03:23:29Z 2009 Article 03043770 10.1016/j.aquabot.2009.05.003 AQBOD http://www.scopus.com/inward/record.url?eid=2-s2.0-69249229598&partnerID=40&md5=8336c43a11f960f90eb68822873440bd http://cmuir.cmu.ac.th/handle/6653943832/5795 English |
institution |
Chiang Mai University |
building |
Chiang Mai University Library |
country |
Thailand |
collection |
CMU Intellectual Repository |
language |
English |
description |
The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to less than 0.2 d-1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g-1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. © 2009 Elsevier B.V. All rights reserved. |
format |
Article |
author |
Jampeetong A. Brix H. |
spellingShingle |
Jampeetong A. Brix H. Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans |
author_facet |
Jampeetong A. Brix H. |
author_sort |
Jampeetong A. |
title |
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans |
title_short |
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans |
title_full |
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans |
title_fullStr |
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans |
title_full_unstemmed |
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans |
title_sort |
effects of nacl salinity on growth, morphology, photosynthesis and proline accumulation of salvinia natans |
publishDate |
2014 |
url |
http://www.scopus.com/inward/record.url?eid=2-s2.0-69249229598&partnerID=40&md5=8336c43a11f960f90eb68822873440bd http://cmuir.cmu.ac.th/handle/6653943832/5795 |
_version_ |
1681420493120339968 |