Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans

The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to les...

Full description

Saved in:
Bibliographic Details
Main Authors: Jampeetong A., Brix H.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-69249229598&partnerID=40&md5=8336c43a11f960f90eb68822873440bd
http://cmuir.cmu.ac.th/handle/6653943832/5795
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-5795
record_format dspace
spelling th-cmuir.6653943832-57952014-08-30T03:23:29Z Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans Jampeetong A. Brix H. The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to less than 0.2 d-1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g-1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. © 2009 Elsevier B.V. All rights reserved. 2014-08-30T03:23:29Z 2014-08-30T03:23:29Z 2009 Article 03043770 10.1016/j.aquabot.2009.05.003 AQBOD http://www.scopus.com/inward/record.url?eid=2-s2.0-69249229598&partnerID=40&md5=8336c43a11f960f90eb68822873440bd http://cmuir.cmu.ac.th/handle/6653943832/5795 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description The effects of NaCl salinity on growth, morphology and photosynthesis of Salvinia natans (L.) All. were investigated by growing plants in a growth chamber at NaCl concentrations of 0, 50, 100 and 150 mM. The relative growth rates were high (ca. 0.3 d-1) at salinities up to 50 mM and decreased to less than 0.2 d-1 at higher salinities, but plants produced smaller and thicker leaves and had shorter stems and roots, probably imposed by the osmotic stress and lowered turgor pressure restricting cell expansion. Na+ concentrations in the plant tissue only increased three-fold, but uptake of K+ was reduced, resulting in very high Na+/K+ ratios at high salinities, indicating that S. natans lacks mechanisms to maintain ionic homeostasis in the cells. The contents of proline in the plant tissue increased at high salinity, but concentrations were very low (<0.1 μmol g-1 FW), indicating a limited capacity of S. natans to synthesize proline as a compatible compound. The potential photochemical efficiency of PSII (Fv/Fm) of S. natans remained unchanged at 50 mM NaCl but was reduced at higher salinities, and the photosynthetic capacity (ETRmax) was significantly reduced at 50 mM NaCl and higher. It is concluded that S. natans is a salt-sensitive species lacking physiological measures to cope with exposure to high NaCl salinity. At low salinities salts are taken up and accumulate in old leaves, and high growth rates are maintained because new leaves are produced at a higher rate than for plants not exposed to salt. © 2009 Elsevier B.V. All rights reserved.
format Article
author Jampeetong A.
Brix H.
spellingShingle Jampeetong A.
Brix H.
Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
author_facet Jampeetong A.
Brix H.
author_sort Jampeetong A.
title Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_short Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_full Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_fullStr Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_full_unstemmed Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans
title_sort effects of nacl salinity on growth, morphology, photosynthesis and proline accumulation of salvinia natans
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-69249229598&partnerID=40&md5=8336c43a11f960f90eb68822873440bd
http://cmuir.cmu.ac.th/handle/6653943832/5795
_version_ 1681420493120339968