Isolation and characterization of rhizobia from nodules of clitoria ternatea in Thailand

© 2018 The Japanese Society for Plant Cell and Molecular Biology. Rhizobia were isolated from the root nodules of Clitoria ternatea in Thailand. The phylogeny of the isolates was investigated using 16S rDNA and the internal transcribed spacer (ITS) region from 16S to 23S rDNA. The phylogenetic tree...

Full description

Saved in:
Bibliographic Details
Main Authors: Mallika Duangkhet, Yamikani Chikoti, Apiraya Thepsukhon, Pilunthana Thapanapongworakul, Sirinapa Chungopast, Shigeyuki Tajima, Mika Nomura
Format: Journal
Published: 2018
Subjects:
Online Access:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85050691960&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/58163
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:© 2018 The Japanese Society for Plant Cell and Molecular Biology. Rhizobia were isolated from the root nodules of Clitoria ternatea in Thailand. The phylogeny of the isolates was investigated using 16S rDNA and the internal transcribed spacer (ITS) region from 16S to 23S rDNA. The phylogenetic tree of the 16S rDNA showed that ten of the eleven isolates belonged to Bradyrhizobium elkanii, and one belonged to Bradyrhizobium japonicum. The topology of the ITS tree was similar to that of 16S rDNA. The acetylene reduction activity was higher for the nodules inoculated with the isolated B. elkanii strains than for those inoculated with B. japonicum strains. When C. ternatea plants were inoculated with various Bradyrhizobium USDA strains isolated from Glycine max, C. ternatea formed many effective nodules with B. elkanii, especially USDA61. However, acetylene reduction activity per plant and the growth were higher in C. ternatea inoculated with our isolates. From these data we propose that effective rhizobia inoculant were identified for C. ternatea cultivation.